
 
Bio 608 Problem Set – Fall 2007 

 
1.  Consider the following hypothetical game, which is sort of a 2-player 

producer-scrounger game. Animals form pairs and harvest resources on their 
territories. Let the resource value of a territory be V. If two producers get 
the territory, they share V; i.e. they each get V/2. Scroungers are incapable 
of harvesting resources themselves, so if they share a territory, they each 
get 0. If a Producer shares a territory with a Scrounger, the Producer gets 
proportion p of V; whereas, the Scrounger gets the remainder (i.e. 
proportion (1-p) of V). So the payoff matrix looks like this (payoffs are to 
players along the rows, given an opponent who plays a strategy in the 
columns): 

Producer

Scrounger

Producer Scrounger

V/2

0

p V

(1-p) V

 
 
 

Using your vast knowledge of game theory, your job is to determine the 
evolutionarily stable strategy, or ESS.  
 
Let f equal the frequency of Producers at the ESS, and solve for f in 
terms of p. How does the ESS depend on p, if at all? Are there 
conditions that favor a mixed ESS or genetic polymorphism versus a pure 
ESS? If so, what are they? (Hint: consult your notes on the Hawk-Dove 
game.)  

 



First, check to see if P &/or S are pure ESS’s by using stability criterion 1 (i.e. I is 
an ESS if E(I,I) > E(J,I), or if I is a better reply to itself than is J). P is an ESS if  
 

E(P,P) > E(S,P), 
 
which is true if p > 0.5 . If p = 0.5, then  
 

E(P,P) = E(S,P), 
 
in which case we need to consider stability criterion 2: is E(I,J) > E(J,J)? Because  
 

E(P,S) > E(S,S), 
 
P is an ESS when p = 0.5 .  Thus P is a pure ESS if p ≥ 0.5. S is never an ESS 
because,  
 

E(S,S) < E(P,S). 
 
A mixed ESS or a genetic polymorphism is possible if p < 0.5 (in which case neither 
P nor S are pure ESS’s). Let f  be the frequency of P at the ESS. Producer fitness 
is given by 
 

WP = f E(P,P) + (1-f) E(P,S), 
 
and Scrounger fitness is given by 
 

WS = f E(S,P) + (1-f) E(S,S). 
 
At the ESS, WP = WS ; therefore, we set the two fitnesses equal to one another, 
substitute in the payoffs, and solve for f in terms of p. When we do this, we find 
that at the ESS, 
 

f = 2 p . 
 
Interestingly, Scroungers can only persist in this game if they get more resources 
than Producers when they share territories with Producers.  
 



2.  Consider the Ideal Free Distribution. You have a habitat with five patches 
(i.e. mechanical bird feeders) in an aviary with 200 hungry foragers (i.e. 
birds). The 5 patches distribute bird seed at the following rates: Patch A, 5 
units per minute; Patch B, 10 units per minute; Patch C, 15 units per minute; 
Patch D, 20 units per minute; and Patch E, 50 units per minute. 

 
 What is the predicted Ideal Free Distribution of foragers among 

patches? 
10 foragers in Patch A, 20 foragers in Patch B, 30 foragers in Patch C, 40 
foragers in Patch D & 100 foragers in Patch E. 

 
 What is the average feeding rate within and among patches? 

0.5 units of food per forager per minute 
 
 Show the graphical solution to this problem. 

The graphical solution is a bivariate plot of Patch Reward Rate (Y) versus 
Foragers Per Patch (X). The IFD line contains 2 points as (X,Y) coordinates: 
the origin (0,0), and the bivariate mean (40,20). See graph below.  
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 The rationale for the origin is that a patch with zero food should attract 

zero foragers. The rationale for the bivariate mean is that at the IFD, the 
average reward rate within and among patches equals the average reward 
rate for the whole environment. The average reward rate for the whole 
environment equals , YBar divided by XBar,  which equals the slope of the 
line. Thus, the IFD predicted number of foragers in each patch lie on this 
line at the given patch reward rates. 

 



3. Consider the following cohort life table, with 5 age classes (0, 1, 2, 3, 4), the 
following numbers in each age class, nx, and the following schedule of birth, 
mx. (Hint: import into Excel and use formulas) 

 
x nx lx sx,x+1 mx lxmx Rx 

0 67523   0    
1 2113   0    
2 276   166    
3 133   166    
4 0   -    

 
 

Fill in the missing columns in the table (lx, sx,x+1, lxmx, and Rx). 
Below is the table with all the values filled in. 
 
 x nx lx sx,x+1 mx lxmx Rx 

0 67523 1 0.031293 0 0 1.005494
1 2113 0.031293 0.13062 0 0 32.13157
2 276 0.004087 0.481884 166 0.678524 245.9928
3 133 0.00197 0 166 0.32697 166
4 0 0 - 0 0 0

 
 
 
 
 
Plot a graph of Rx versus x.  
Next follows the graph of Rx vs x. 
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Imagine a mutation that increased fecundity by 10% at age 2, but 
reduced survival from age 2 to age 3 by 10%. Would such a mutation be 
favored by natural selection? Why or why not (show your calculations)? 



 
If a mutation increased m2 by 10%, but reduced s2,3 by 10%, the table would 
change as follows. The changed values are in bold (note: I built in the 10% 
reduction in s2,3 by reducing n3 to 119.7).  
 
 x nx lx sx,x+1 mx lxmx Rx 

0 67523 1 0.031293 0 0 1.04065 
1 2113 0.031293 0.13062 0 0 33.25499 
2 276 0.004087 0.433696 182.6 0.746377 254.5935 
3 119.7 0.001773 0 166 0.294273 166 
4 0 0 - 0 0 0 

 
 
 
 
 
These adjustments translate into a relative gain of 10% in l2m2 and a relative 
loss of 10% in l3m3. Such a mutation would be selectively advantageous, 
however, because the absolute gain in l2m2 exceeds the absolute loss in l3m3. 
This is reflected in a higher R0, the net replacement rate, for the mutant 
than for the wild type. Subsequent mutant Rxs are also higher, except the 
last age class, when Rx = mx. The changes to the Rx versus x graph are 
indicated in red. 

 
Where on the following graph (Ensminger 2007) does this tradeoff take 
place? 
 
 

 
 
 
 
 
 
 
 
 
 
 
 The tradeoff is represented in Amanda’s figure between arrows D and E. 
 
 
 
 


