Genetics of Speciation in Monkeyflowers

M. lewisii

M. cardinalis

M lewisii and *M cardinalis* are sister species, and their ancestor was most likely pollinated by insects

M. lewisii, F₁ Hybrid , *M. cardinalis*

F₂ Hybrids

- The species differ in 4 floral genes or QTLs
- Bees prefer large flowers and avoid flowers with carotenoids
- Hummingbirds prefer large nectar loads

- Relative nectar volumes: C>H>L
- Strong hummingbird preference for high nectar volume
- Weak, nonsignificant bee preference for high nectar volume

- Hummingbirds show a weak, nonsignificant preference for the *M. cardinalis yup* genotype.
- Bees show a strong preference for the *M*.
 lewisii yup genotypes

Switching Yup (carotenoid) alleles between species through NILs

Wild type *M. lewisii*

M. lewisii with *M. cardinalis* Yup alleles

M. cardinalis with *M. lewisii* Yup alleles

Effects of Yup Genotype and Genetic Background on Pollinator Visits

M. lewisii with *M. cardinalis* Yup alleles had a 68 fold increase in hummingbird visits and a 7 fold decrease in bumblebee visits.

M. cardinalis with *M. lewisii* Yup alleles had a 74 fold increase in bumblebee visits but no decrease in hummingbird visits

Carotenoids evolved independently twice in concert with the evolution of hummingbird pollination

Reproductive Isolation

- Hybrids are ~50% less fit than the 2 parent species
 - Seed set
 - Germination rate
 - Pollen viability
 - Seed mass
- Total isolation is about ~99%
 - Premating isolation (pollinators) ~97%