Biometry Take Home Exam 2
Spring 2010

Name:

Instructions: A copy of this exam (exam2.pdf) and data sheets (exam2data.xls) are on the class
website. The worksheets are in the same order, left to right, as the exam questions below, top
to bottom. In writing up each question, pretend that these are your data and that you’re
preparing your analysis for a talk at the upcoming CEEB symposium. Attending the symposium
are several prominent keynote speakers from outside UK, and you would very much like to
impress them with the fact that you would make an excellent future postdoc in their
laboratories. With that in mind, be sure to make your analysis as clear as possible. Include in
your write up your model statements (from full to whatever model you’re left with, reduced or
not), your summary statistical tables, graphs that drive home your results, and your conclusions
based on the data and hypotheses at hand.

1. Partridge and Farquhar (1981) undertook a study of costs of male reproduction in the fruit
fly, Drosophila melanogaster. They hypothesized that males would invest more energy in
reproduction the more females there were to mate with, and if those females were virgins as
opposed to pregnant, and that this increased energy expenditure would shorten their
reproductive lifespan. They used 5 experimental treatments: No Females, 1 Pregnant Female, 8
Pregnant Females, 1 Virgin Female, and 8 Virgin Females. Previous research had indicated that
male longevity is positively correlated with male body size (thorax length), so they measured
male thorax length as a covariate in their data. Your task is use ANCOVA to analyze their data,
which are contained in the Longevity vs Mating Number worksheet in your excel file.



1. First, plot the data of Longevity versus Thorax Length for the 5 treatments.
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The 5 lines seem roughly parallel. The control and the two pregnant treatments seem on top of
one another, with 1Virg below them, and 8Virg lower still. Next, we begin an ANCOVA with the
interaction term included, which tests for heterogeneity among regression slopes. Our model
statement is:

Log (longevity) = Treatment + Thorax Length + Treatment*Thorax Length

..where Treatment is a fixed categorical variable, and Thorax Length is a fixed continuous
variable.

Analysis of Variance

Source Type lll SS df Mean Squares F-ratio : p -value
TREATMEN$ : 0 021 2 991 0.022
THORAX
TREATMEN$*THORAX 0.0
Error 0790115

The interaction term is not significant, so it is dropped from the model, which is then refitted
and analyzed again.

Analysis of Variance
Source [Typelll SS df Mean Squares F-ratio p -value
TREATMEN§ 0. 783 0. 196 27. 970= 0.000
THORAX |  1.017 I
Error ~ 0.833119

Both Treatment and Thorax Length are significant. Dropping the interaction term lowers AlIC



from -256.322 to -257.712. Thus dropping the interaction seems justified (the lower the AIC,
the better). Besides, ANCOVA assumes parallel regression slopes, and we cannot test adjusted
means unless we drop the interaction. Note, if we drop either Treatment or Thorax Length, AIC
increases; thus, both of these terms should remain in the model.

Although not expected for this exam, an examination of the residuals (sensu Zuur et al’s 2006
model verification) reveals no patterns to worry about.
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Now we examine the hypothesis that female number and reproductive state both contribute to
male longevity. We test all pairwise comparisons among adjusted treatment means. Doing this
gives the following Table and Graph...

~ Fisher's Least-Significant-Difference Test
,,,,,,,,,, TREATMENS(i) @ TREATMENS() : Difference : p-value :95.0% Confidence Interva
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The control and two treatments with pregnant females form a non-significant subset; males
with 1 virgin female have less longevity than this group, and males with 8 virgin females have
less longevity than males with 1 virgin female.



2. A high school intern (Paul Laurence Dunbar Math, Science and Technology Center) undertook
a project that examined the ontogeny of sexual dimorphism in the livebearing fish, Limia
perugia, and quantified this as caudal peduncle depth versus standard length. She was
particularly interested in modeling this sexual dimorphism with the allometric equation:

Y = boX", where Y is caudal peduncle depth and X is standard length. B1 is called the “allometric
coefficient,” and its magnitude indicates positive allometry (b, > 1), isometry (b, = 1) and
negative allometry (b; < 1). Although these parameters (bg, b1) can be estimated by nonlinear
regression, Eakin took advantage of the fact that taking logs of both sides of this equation
makes it linear: logY = logbg + b1 logX, and that the “allometric coefficient,” b, can be estimated
as the slope of the log-log linear regression line. A snapshot of her data are in the Sexual
Dimorphism worksheet in your excel file, where she presents data for a cohort of juveniles
about halfway to their final adult body size. Your job is to determine whether or not for this
snapshot of her data the two sexes are dimorphic in their allometric coefficients for caudal
peduncle depth versus standard length.

2. First, plot the data of Log (Peduncle) versus Log (SL) for the two sexes.
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In class, the way we addressed testing for differences among regression slopes was as the
preliminary test in ANCOVA for homogeneity of regression slopes, which is included in the
ANCOVA model as a Treatment by Covariate interaction. For these data, the model statement
is...



Log(Caudal Peduncle Depth) = Sex$ + Log (Standard Length) + Sex$*Log(SL)

..Where Sex is fixed and categorical, and Log(SL) is fixed and continuous. The Systat ANOVA
table is as follows...

Analysis of Variance

Source [Type Il SSidfiMean Squaresi F-ratio ip-value
SEX$ 0.003
LOGSL .
SEX$*LOGSL| 0.
Error

The significant interaction term means the male slope is significantly different from (i.e. steeper
than) the female slope.

If we examine the individual regression lines and their analyses, we get...

Females

Regression Coefficients B = (X'X)"1X‘Y
Effect [CoefficientiStandard Errori  Std.  {Tolerancel t ip-value
iCoefficient
CONSTANT|  -0.711 0.095: 0.000: 2-7.517: 0.000

LOGSU 0.937 0.066,  0.953  1.000{14.106 0.000

Confidence Interval for Regression Coefficients
Effect | Coefficient 95.0% Confidence Interval: VIF
i Lower | Upper i

CONSTANT -071L 0908  -0.513
LOGSL 0.937: 0.798 1.075! 1.000
Males

Regression Coefficients B = (X‘X)'1X'Y
Effect [CoefficientiStandard Errori  Std.  iTolerancei t ip-value
iCoefficienti
CONSTANT|  -1.203 0.190:  0.000: 2-6.340.  0.000

LOGSL | 1331 0138  0.888  1.000:9.664; 0.000

Confidence Interval f_or Regression Coefficient_s
Effect Coefficient 05.0% Confidence Interval:VIF
i Lower | Upper i
CONSTANT 1203 1594 0812

LOGSL 1331  1.048  1.615 1.000




Note that this is a case where slopes differ significantly, in spite of slight overlap in 95%
confidence intervals.

The t-test for each regression slope is a variation on the single sample t-test (which compares a
sample mean against a parametric mean e.g. u=0)..,

t:bl_lgl

SE,

..where the null hypothesis is 1 = 0, so the t statistics in the tables are regression slopes
divided by their standard errors. We can do the same test against the null hypothesis of
isometry, B1 = 1. Doing these t-tests, we obtain,

Females: t = (0.937-1)/.066 = -0.955, df = 20, p = 0.351 (two-tailed)
Males: t = (1.331-1)/.138 = 2.399, df = 25, p = 0.024 (two-tailed)

...thus males show significant positive allometry; whereas females do not differ significantly
from isometry. Note that we can compare male and female regression slopes with a two
sample t-test, and if we do so, the t we obtain is the square root of the F for the Sex*Log(SL)
interaction in the ANOVA table above.
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Residuals appear OK; although, the variances appear heterogeneous between the sexes.



3. Paruelo and Laurenroth (1996) are interested in whether or not the relative abundance of C3
versus C4 plant species (logC3) depends on latitude, longitude and their interaction. Your task it
analyze their data with multiple regression (note that General Linear Model procedures easily
accommodate interaction terms, and use OLS to estimate your partial regression coefficients).
Is there collinearity in your analysis? Can you deal with it, and still answer their question?

3. This problem is one of multiple regression, which we can analyze with a General Linear
Model (that uses OLS estimation), such as Systat’s GLM. Our model statement is...

Log (C3) = Latitude + Longitude + Lat*Long

..where Lat and Long are both fixed continuous variables. Multiple regression gives the
following Table with all 3 slopes significant.

Regression Coefficients B = (X'X)’1X'Y

Effect |CoefficientiStandard ErroriStd. CoefficientTolerancei t ip-value|
LONG 0.035. -1.824
LAT : 70091 -3095  0.003-2.10L 0.039
NG [ o008 G043 0003 2,573 0013

Pearson Correlation Matrix

LAT LONGLAT*LONG
LAT 1.000 _
LONG 0.097: 1.000
LAT*LONG{0.914: 0.48% 1.000

The extremely low tolerance levels indicate collinearity due to high correlations between main
effects and their interaction, especially between Lat and Lat*Long.

60 T T T
o
50— o ° 4
o o °
[ oogpo °
o ©® &
= @Y L
I 8 |
i40 80 o g%
o o
o o 8
% 9
o) g
30+ 060 -
20 | | |
2000 3000 4000 5000 600C

LATLONG



We can address this problem by mean centering both Latitude and Longitude, computing a new
interaction based on these mean centered main effects, and refitting the model. Doing this, we
get the following:

Regression Coefficients B = (X'X)'X'Y_ ) )

Effect CoefficientiStandard ErroriStd. CoefficientiTolerance] t ip-value
CONSTANT ~ -0.553 0.027: 0.000:  :20.131
CENTLONG ~ -0.003 0.004: -0.051:  0.980: ;

CENTLAT ~0.048 0.006: 0783 08

CENTLONG*CENTLAT] 0.002 0.001i 0.238  0.820; 2.

572

Pearson Correlation Matrix

CENTLATICENTLONGICENTLATLONG

CENTLAT : f
CENTLONG | 0.0¢
CENTLATLONG 1.000
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Now the tolerances are at acceptable levels as are the correlations between the interaction and
main effects, and we can interpret our regression parameters. Both Lat and Lat*Long are
significant; whereas, Long is no longer significant. Its apparent significance in the first analysis
was due to collinearity. We retain the full model, because if an interaction is significant, we
retain it along with its main effects.
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Residuals before (above) and after (below) mean centering versus the 3 axes. Both sets of
patterns are similar. There seems to be some variance heterogeneity, with increased variances
toward the centers of the Lat and Lat*Long distributions.
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4. Jafaar et al (unpublished) are interested in whether or not male sexual harassment (forced
male mating attempts per minute per female) affects female survival in the western
mosquitofish, Gambusia affinis. They divided females into two treatments: high harassment
(1.7 forced mating attempts/min) versus low harassment (0.9 forced mating attempts per min),
and included body size (log initial weight) as a covariate. Use logistic regression, or a
Generalized Linear Model with proper linking function to analyze your data.

4. First we plot the binomial survival data, 0 or 1, versus body size for our two treatments.
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Next, we perform a logistic regression (or a generalized linear model with a logit or binary
linking function). Our model is...

Survival = Harassment + Log (Weight) + Harassment*Log(Wt)

..where Harassment is a categorical fixed variable and Log(Wt) is a continuous fixed variable.

Parameter Estimates
Parameter EstimateStandard Error:  Z p-value95 % Confidence Interval
i Lower | Upper
1 CONSTANT 5.993: 2.681: 2.235: 0.025: 0.738: 11.248
2 HARASSMENTS 3 2.954-1.272 0203  -9.547 2.031]
3 LOGIWT 5814  3571-1628 0104  -12.814 1.18§
4 HARASSMENT$*LOG|WT30874079 0.757? 0.449; -4907 11.081

The interaction term is not significant; therefore, we will drop it and refit the model..,
Survival = Harassment + Log (Weight)

...which gives the following results.



Parameter Estimates

Parameter Estimate?Standard Errorf z Ep-value§95 % Confidence Interval

i Lower | Upper
1 CONSTANT 4.440: 1.328: 3.344: 0.001: 1.837: 7.042
5 HARASSVIENTS igh 1710 1904 0057 3469 0,050
3 LOGIWT -3.612i 1.727-2.092 0.036} 6,997, -0.22§

To check further on whether dropping the interaction was justified, we employ the log-
likelihood test on Deviances (Quinn & Keough 2002, 13.15, p. 367):

G = -2(log-likelihood reduced — log-likelihood full)

The log-likelihood of the full model is -16.891. If we drop the interaction from the model, the
log-likelihood is -17.204. Thus, G = -2*(-17.204-[-16.891]) = 0.626. This is distributed as x> with 1
df (for one less parameter estimated between the full and reduced models), p = 0.429. Thus, we
are justified in dropping the interaction term. Dropping the interaction gives a model in which
the covariate, Log(Ws1) is significant, and the treatment, Harassment, is almost significant.
Should we also drop Harassment from the model? The log likelihood of the model without the
interaction, is -17.204, and the log likelihood of a further-reduced model without Harassment..,

Survival = Log (Weight)

.is -19.155. G = -2*(-19.155-[-17.204]) = 3.904, which is distributed as x* with 1 df, p = 0.048.
Thus, we keep Harassment in the model. Our final model is..,

Survival = Harassment + Log (Weight)

In this case, we’d cautiously suggest that male Harassment may lower female survival, calculate
the power of this test and sample size necessary to detect this effect size in a future
experiment. Below is a plot of the predicted survivals versus body size for the two treatments.
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