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We introduce the complementarity dilemma, a two-player, binary response game in which the
payoffs are highest when the two players respond differently. Using the classifier system EvA,
we determine the evolutionary dynamics and structure of strategies that evolve to play an
iterated version of this game, and we relate the results to the evolution of major types of sexual
reproduction, particularly simultaneous hermaphroditism. We find that complementarity
strategies consistently evolve under a broad range of conditions, but that those most
consistent with simultaneous hermaphroditism can predominate only when a substantial cost
of repeatedly adopting the female role is imposed. The cost is analogous to the fecundity
reduction to be expected when a single partner must repeatedly produce the eggs in sexual
reproduction.

7 1998 Academic Press

Introduction

Cooperation in nature and its evolution have
stimulated much recent work in evolutionary
ecology (e.g. see Dugatkin, 1997 and references
therein). Because cooperation is inherently
contingent and expresses the nature of inter-
actions among individuals, the conceptual
underpinnings of this vibrant field were firmly
established with the application of mathematical
game theory (Rappoport & Chammah, 1965;
Trivers, 1971; Axelrod & Hamilton, 1981).
Pairwise, binary-response interactions—in which
individual selfishness (defection) is rewarded, but
mutual cooperation is more beneficial than
mutual defection—are thought to be well

represented in nature. To address them, theorists
have relied heavily on the Prisoner’s Dilemma
game (PD; see Axelrod & Hamilton, 1981;
Axelrod & Dion, 1988). These and other studies
show that individuals engaged in an iterated
series of PD games (i.e. an IPD) should achieve
mutual cooperation at high frequency, as long as
the series is sufficiently long and of indeterminate
length (e.g. see Axelrod & Hamilton, 1981).
But recent doubts about the broad applicability
of the standard IPD representation to nature
have underscored the need to consider other
conceptual tools for analysing cooperative
interactions (Noe, 1990; Dugatkin et al., 1992;
Clements & Stephens, 1995; Heinsohn & Packer,
1995).

Here we introduce a new approach—the
complementarity dilemma (CD, or ICD in its§Author to whom correspondence should be addressed.
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iterated form). Situations arise in nature in which
a pair of repeatedly interacting individuals, each
capable at any particular time of playing any one
functional role from a finite set of such roles,
must consistently adopt different and comp-
lementary roles to maximize their fitness. When
both adopt the same role, the result is less
rewarding or even disastrous. For example, in
some species with altricial offspring, one parent
must forage while the other tends the young.
When both parents forage simultaneously, the
offspring are left unprotected, and when both
parents simultaneously tend the offspring, no
food is obtained. Thus, at any particular time,
the parents must sort out who forages and who
stays at home.

It is especially important to understand how
this kind of complementarity can arise even
between individuals unable or unwilling to signal
their intentions, such as early in the evolution of
this phenomenon within a species, or whenever
the two roles are differentially advantageous.
Suppose for simplicity (as in the PD) that each
of two interacting individuals must adopt one of
two possible roles (A or B) in each interaction
without signaling intentions, and that these roles
are adopted simultaneously, as for the parents in
the parental-care example. Let the reward or
fitness gain for the focal individual in a single
interaction be f(ij), where the focal plays i (i.e.
adopts role i) and the other plays j, and where
i and j may or may not be the same. Then the CD
is defined as f(BA)q f(AA) and f(AB)q f(BB).
In the special case of the symmetrical comple-
mentarity dilemma (SCD), f(AB)= f(BA) ; all
other cases of the complementarity dilemma are
considered asymmetrical (ACD). Payoff matrices
for a simple SCD and for two ACDs are
illustrated in Fig. 1.

There are of course other games in the
biological and game-theory literature related to
the Prisoner’s Dilemma but sharing the non-PD
property that the payoff for cooperation against
defection exceeds the payoff for mutual
defection. The best known of these are Chicken
(e.g. Rapoport & Chammah, 1965; also
note their Matrix 25), the Cruel Bind (Trivers,
1972), and the Battle of the Sexes (e.g. Colman,
1995). See Mesterton-Gibbons & Dugatkin
(1992) for a categorization of two-player

F. 1. Example payoff matrices for the complementarity
dilemma game (CD). (a) A symmetrical complementarity
dilemma (SCD) payoff matrix, (b), (c) payoff matrices for
two asymmetrical cases (ACD).

games that fits this situation into theoretical
context.

As for the Prisoner’s Dilemma, one Comple-
mentarity Dilemma game between two individ-
uals assumed to be unable to communicate with
each other is not very interesting, but sequences
of games open some new possibilities. In a single
SCD game, an individual within a randomly
constituted pair may be equally likely to make
either alternative play, resulting in complemen-
tarity with probability 0.5. But in a sequence of
such games (an ISCD), certain strategies based
on the previous plays of one or both players can
quickly yield consistent complementarity, as we
will demonstrate.
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Mating systems provide prime examples of
complementarity, and for individuals capable of
functioning either as a male or as a female (i.e.
as simultaneous hermaphrodites), mating seems
to present a CD. Well-studied examples of
simultaneous hermaphroditism include egg
trading in the fishes Hypoplectrus nigricans
(Fischer, 1980, 1981, 1987), Serranus tortugarum
(Fischer, 1984; Fischer & Hardison, 1987),
Serranus tabacarius (Petersen, 1995), the sea-
basses as a group (Fischer & Petersen, 1987), and
Lythrypnus zebra (St. Mary, 1996); egg trading in
polychaete worms Ophryotrocha diadema
(Akesson, 1976; Sella, 1988, 1991; Premoli &
Sella, 1995a), O. socialis (Ockelmann &
Akesson, 1990), and O. gracilis (Sella et al.,
1997); and sperm trading in the sea slug Navanax
inermis (Paine, 1965; Leonard & Lukowiak,
1985; Leonard, 1990, 1991). Progress has been
made in developing a theoretical framework for
understanding the evolution of this reproductive
mode (Tomlinson, 1966; Fischer, 1988; Leonard,
1990; Connor, 1992). Fischer (1988) described
egg trading in sea basses as a special case of the
Tit-for-Tat (TFT) strategy—in this context, TFT
would be to cooperate by providing eggs to your
partner unless your partner fails to provide eggs
to you in the previous exchange. Fischer noted,
however, that egg trading differs from TFT,
because eggs are not offered by both partners at
the same time.

In the present study, we view simultaneous
hermaphroditism as complementarity. We use
the classifier-system model EvA (Crowley, 1996)
to study the evolution of strategies for playing
the ICD with the payoff matrices of Fig. 1. We
find that the strategy most consistent with egg
trading in simultaneous hermaphrodites does
consistently evolve but tends to be relatively
uncommon unless constraints analogous to
physiological costs of rapidly repeated egg
production are imposed. We then consider the
implications of these results for the evolution of
mating systems and cite some other examples of
complementarity in nature that deserve attention
in future work.

Methods

We focus initially in the present analysis on
interactions that resemble those resulting in

egg-trading in small populations with high
pairing fidelity, as seen in laboratory studies of
the polychaete Ophryotrocha diadema (Akesson,
1976; Sella, 1985, 1988, 1991). In O. diadema,
young juveniles are protandrous males but with
increasing length are soon also capable of
producing eggs, reaching full maturity at a length
of about 5 mm. Hermaphrodites prefer to
mate with other hermaphrodites (Sella, 1985).
Spawning is synchronized by close contact
during a courtship lasting for several hours and
is followed by mating that features regular
alternation of sex roles between partners
(Sella, 1985). The reproductive success of
reciprocating individuals is twice as high as for
non-reciprocators (Sella, 1988). Brood care,
which increases offspring survival (Sella, 1988), is
provided by both parents. Though apparently
nothing is known about reproductive behavior of
this species in nature (G. Sella, pers. commun.),
slow adult dispersal and low population densities
suggest that an individual’s entire reproductive
output may result from a single pairing (see
Premoli & Sella, 1996b). We therefore emphasize
monogamous pairings in the present study.

To simulate the evolution of strategies
appropriate for addressing this sort of comple-
mentarity scenario, we used EvA, a classifier
system capable of exploring a wide range of
pairwise, binary-response interactions within
small populations [Crowley, 1996; classifier
systems and some close conceptual relatives were
developed by John Holland and colleagues—see
Holland (1992) and Goldberg (1989) for theory
and applications of this powerful family of
techniques]. In EvA, individuals are algorithms
composed of rules that specify how the focal
individual should respond in the current game,
given a particular pattern of most recent
responses by one or both players in earlier games
of the sequence. Rule syntax can be summarized
as:

fi fi−1 . . . f1/ojoj−1 . . . o1: f0,

where the fi-to-f1 sequence indicates the focal’s
responses in the last i games (ie 0), the oj-to-o1

sequence indicates the other player’s responses in
the last j games ( je 0), and f0 is how the focal
should respond in the present game. The order of
a rule is defined as i+ j. In applying EvA to the



. .   .16

ICD, we retain the PD convention of represent-
ing the two possible responses as C and D, where
C (cooperate) represents the female role as egg
supplier and D (defect) the male role as provider
of the much less energetically expensive sperm.
For example, the third-order rule C/DD:C says
that if the focal individual cooperated in the last
game and the other individual defected in the last
two games, then the focal should cooperate in
the present game.

In EvA, the rules that constitute an algorithm
(= individual= strategy) operate under the
following three ‘‘laws’’:

1. Higher-order rules supercede lower-order rules
when both apply. For example, the three-rule
algorithm (/:C, /C:C, D/C:D) will respond with
D to a preceding game in which the focal played
D and the other played C, because the more
specific third rule overrides the more general first
and second rules—though all three fit the
relevant history.
2. When same-order rules apply, the rule invoked
is chosen randomly. For example, the four-rule
algorithm (/:C, /:D, C/:C, /C:D) is equally likely
to respond with C or D to either mutual
defection (first two rules both apply) or mutual
cooperation (last two rules both apply).
3. Every algorithm must contain at least one
zero-order rule (i.e. /:C or /:D). This ensures that
the algorithm provides a response to every
possible history.

EvA begins with a population of algorithms
composed of random rules, and randomly
allocates the algorithms to ‘‘trait-group’’ subsets
that play a round-robin ICD tournament against
each other (see Spohn, 1995). (In most of the
runs described in this article, each pair of mating
individuals constitutes a trait group.) Once these
fitness-evaluation tournaments are complete, the
total points accumulated by all players in the
population are compared to calculate each
individual’s expected proportional contribution
of offspring to the next generation. (In the
present study, this is simply an individual’s total
fitness points, divided by the population’s total
fitness points.) In the reproductive phase of each
generation, a new population is generated, one
offspring at a time, through fitness-weighted
bi-parental reproduction. Each offspring inherits

its algorithm from one parent—except that one
or more rules may be replaced by rules from the
other parent (crossover), loci within rules may
mutate between C and D, and rules may
randomly change length (see Crowley, 1996 for
details). But overall, the new generation strongly
resembles the most successful ICD players in the
previous generation. This process of fitness
determination followed by reproduction then
repeats for some substantial number of gener-
ations, during which certain evolutionary trends
and dominant strategies generally appear.

The definitions and default magnitudes of the
main parameters of the classifier-system simu-
lation are listed on the left side of Table 1. Each
of the 50 replicate runs extended for 400
generations, with fitness averaged over only the
last 200 to eliminate any initial transient
behavior. To keep the run-duration and analysis
manageable but permit sufficient evolutionary
experimentation, we set the default population
size at 20 individuals. Previous work demonstrat-
ing that memory of only about one previous
game was retained, even when memory-retention
carried negligible cost in a similar iterated-game
scenario (Crowley et al., 1996; Spohn &
Crowley, 1997), convinced us to include only
responses from the immediately preceding game
in rules of the default run.

Algorithms consisted of 10 rules, a number
consistent with relatively high levels of mutual
cooperation in the IPD (Crowley, 1996), yet
permitting relatively easy interpretation by visual
inspection. As previously explained, individuals
were randomly and permanently paired. Each
pair played a total of 171 consecutive CD games
per generation. This number allowed us in later
comparisons to expand the trait (mating) groups
to 10 or 20 individuals each, while playing equal
numbers of games with each other individual in
the group (i.e. 19 or 9 games with each other
individual, respectively) to accumulate the 171
games per individual.

The default payoff matrix [Fig. 1(a)] was
chosen to reflect monogamy; though eggs may be
more physiologically costly to produce, lifetime
reproductive success within pairs of strictly
monogamous males and females must be the
same. To impose a fitness cost on both members
of a pair when one of them attempts to provide
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eggs twice in a row, we introduced a fitness
multiplier parameter (abbreviated repco, for
repeat coefficient) into EvA; in the default runs,
however, this is set to 1.0 and therefore has no
effect. The crossover frequency per rule locus
was set at 0.21, to maintain the same degree of
genetic linkage as for single-break crossover of
linear segments (see Crowley, 1996). Mutation
rates were chosen to permit consistent eventual
fixation or near-fixation of a single algorithm,
while retaining substantial variation over at least
the initial part of the evolutionary sequence (see
Table 1).

Our analysis proceeded as follows. We
conducted the default runs to determine whether
algorithms capable of achieving a high frequency
of complementarity would consistently evolve.
The frequency of complementarity for the
relevant payoff matrix [Fig. 1(a)] was expressed
directly by mean fitness. We calculated the
standard error over the 50 replicate fitness means

in each run set and used non-overlap of error
bars as a rule of thumb for statistically
distinguishing overall means between such run
sets. We also carefully examined the strategies
that emerged from the 400th generation of the 50
replicate default runs, with particular interest in
the frequency of algorithms capable of achieving
and maintaining alternating complementarity
(i.e. the CAD strategy—Cooperation Alternat-
ing with Defection). Because another group of
algorithms capable of achieving and maintaining
complementarity without alternation (i.e. the
DorC strategy—Defection or Cooperation) pre-
dominated, we calculated the CAD fraction as
the number of the 50 replicate runs in which
CAD became fixed in the population, divided by
the number in which either CAD or DorC
became fixed.

To gain some sense of how strongly our
default results depended on the parameter
magnitudes used, we then conducted a sensitivity

F. 2. Some strategies that evolve in the ICD game. The dominant strategies over a very wide range of parameter
magnitudes are CAD (Cooperate Alternating with Defect) and DorC (Defect or Cooperate), and the Long Transient
variations. These strategies settle into complementary response sequences with a genetically identical or otherwise compatible
partner, either with both players adopting constant and complementary roles (DorC), or with the players alternating
responses out of phase with each other (CAD). Some CAD and DorC strategies feature deterministic rather than
probabilistic responses to a previous attempt by both players to adopt the same strategy; this can sometimes increase the
number of games required to achieve sustainable complementarity (note the potential effects of the D/D:C rule and the
single zero-order rule in the Long Transient examples). Other strategies may resemble CAD or DorC and be capable of
complementarity but also capable of displaying non-complementarity (e.g. the Facultative strategies containing the C/C:C
rule or the C/C:D & D/D:C rule pair). Some may be incapable of settling into a repeated pattern (Random), while others
inevitably lock onto a fixed response regardless of the other individual’s behavior (Fixed). Some strategies other than DorC
or CAD are capable of achieving complementarity in games against DorC (Fixed) or CAD (Alternator), but are unable
or less likely to do so in games against another identical algorithm.
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analysis. In this exercise, the magnitude of only
one parameter at a time was changed (usually by
a factor of two where appropriate) from its
default value, and the response was assessed by
comparing the resulting mean fitness and CAD
fraction to corresponding values from the default
run. To account for the low CAD fractions in
most of the default and sensitivity runs, we
calculated expected fitnesses for interactions of
importance early in these evolutionary se-
quences. We then documented two relevant
sequences graphically, and identified the rules
and rule combinations likely to facilitate the
evolutionary success of DorC and CAD. Finally,
we imposed fitness costs of consecutive-game
oviposition by the same individual to determine
whether this might shift the balance between the
DorC and CAD strategies.

Results

In the default run set, over 95% of CD games
in the last 200 generations of the replicate runs
yielded complementary behavior (fitness
mean2 standard error=0.9542 0.012). In
most of these replicates, algorithms consistent
with complementarity became dominant well
within the first 100 of the 400 generations per
run.

At the end of 400 generations, the evolved
population usually consisted exclusively of
identical algorithms, though with considerable
variability among runs in structural details.
Nevertheless, closely related classes of algor-
ithms resulting in very similar behavior were
easily recognizable. In the default output, 35 of
the 50 fixed or predominant algorithms were of
the DorC (i.e. D or C) type, which has the
following key behavioral features in games
against others of its type: (1) usually a brief
initial non-complementary transient, followed by
(2) a consistent, single repeated behavior to the
end of the sequence that is (3) complementary to
that of its opponent and (4) equally likely to
repeat D or C. Structurally, this requires one or
more rules that help determine the transient, and
at least one pair of matched first- or second-
order rules that allow DorC to settle into playing

either D or C (see Fig. 2; note that the 3-rule
long-transient algorithm is also a DorC
example).

Twelve of the other 15 runs in the default set
produced algorithms of type CAD (C
Alternating with D). In games against itself,
CAD has the first three of the four features
listed above for DorC. But instead of settling
into an equiprobable repeat of D or of C, CAD
locks onto an alternation of C and D out of
phase with the other player. In structure, CAD
is very similar to DorC, except that the matched
pair of first- or second-order rules specify
responses opposite to those in the equivalent
DorC rules (Fig. 2; note that the 5-rule
long-transient algorithm is of type CAD). It
is these matched rules that shuttle behavior
back and forth between C and D. CAD is the
strategy most consistent with egg trading and
other alternating forms of reciprocity, but it
represented only about one-quarter of these
two dominant types of complementarity that
evolved in the default runs (i.e. a CAD fraction
of 0.255).

Using geometric-series approximations,
expected duration of the non-complementary
transient when a DorC or CAD strategy plays
another of its type can be shown to be minimized
at one game by equiprobable C and D following
mutual defection or mutual cooperation. The
examples under the DorC and CAD headings of
Fig. 2 are minimal-transient cases. In contrast,
the 3-rule DorC algorithm has an expected
transient duration of three games against
another of its type. In short ICD sequences,
longer transients can substantially reduce fitness.

In the default and other runs of EvA using the
payoff matrices of Fig. 1, a few other categories
of algorithms appeared, most of which rep-
resented variations of the DorC and CAD types
(Fig. 2). Some of these expressed constant
behavior independent of the other player’s
behavior (Fixed); some could achieve alternating
complementary behavior against CAD but only
inconsistently or not at all against another player
of their type (Alternator); some were incapable
of attaining a consistent behavior pattern at all
(Random); and others could express more than
one of the other types, depending on chance
during the initial generations (Facultative). All
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F. 4. The fraction of complementarity strategies (CAD
plus DorC) evolving to fixation that are CAD (i.e. the CAD
fraction), and the mean and standard error of fitness, for
different magnitudes of the repeat coefficient (repco). As the
fitness cost of having either player cooperate twice in a row
goes up (i.e. as repco, the fitness multiplier, goes down), the
CAD fraction rises in a sigmoid pattern to 1.0, while fitness
declines somewhat and then partially recovers. (E) CAD
fraction; (Q) mean fitness.

of these types illustrated in the lower part of
Fig. 2 were rare after 100 generations of an ICD

F. 3. Frequencies of certain strategies and interactions
in the first few generations of two sequences, each leading
to fixation of one of the two dominant strategies. (a) Fixed
strategies are relatively abundant early in this sequence,
interacting effectively with the first few DorCs that appear.
Thereafter, DorCs quickly increase in frequency and
outcompete fixed strategies and others; (b) a CAD and an
Alternator (a non-CAD nevertheless capable of achieving
an alternating pattern complementary to CAD) appear
simultaneously and interact to mutual advantage, leading to
an abundance of Alternators that eventually allow CADs to
take over. (a) (E) DorC; (Q) fixed; (R) DorC/DorC; (W)
DorC/fixed; (b) (E) CAD; (Q) alt; (R) CAD/CAD; (W)
CAD/alt.

sequence, but they figured prominently in the
early generations of each run.

Results of the sensitivity analysis are presented
in Table 1. There were strong and consistent
responses to doubling or halving the population
size. Populations of size 40 achieve higher fitness
with even greater dominance of DorC over CAD
than in the default, whereas populations of size
10 only achieved about 80% complementarity in
which CAD was almost as frequent as DorC.
Enlarging the trait or mating group size also
sharply reduced the amount of complementarity,
though with little effect on the CAD fraction.
Results related to the number of generations run
or used to obtain data were consistent with the
interpretation that most non-complementary
behavior disappears within the first 100 gener-
ations of the evolutionary sequences. Surpris-
ingly, making the two complementary payoffs
different from each other had no clear effect, nor
did the number of previous games remembered
or the crossover or mutation rates. Reducing the
number of rules per algorithm or the sequence
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length reduced fitness and the CAD fraction
somewhat, though increasing these parameters
had little effect. Responses to changes in the
fitness multiplier (repco) are described below.
Overall, the sensitivity analysis indicated that
results did not depend strongly on any of the
more arbitrary parameter values, though trends
associated with population size will be addressed
further in the Discussion.

To account for the dominance of DorC over
CAD in these simulations, we examined the
initial few generations of some evolutionary
sequences. Examples are presented in Fig. 3.
Fixed strategies were relatively common early on
in most of these sequences [e.g. Fig. 3(a)],
providing an important advantage for DorC
strategies that happened to appear (see Appen-
dix A). Once DorC became common by adopting
roles complementary to those of Fixed strategies,
DorC could outcompete Fixed strategies by
virtue of its role flexibility. CAD strategies were
similarly dependent on the presence of Alterna-
tors to become abundant and eventually win out,
but Alternators appeared less frequently than did
Fixed strategies by mutation and recombination.
This is true because, though structurally similar
to Fixed strategies, Alternators must contain a
pair of the first- or second-order rules consistent
with switching behaviors back and forth (e.g. see
Fig. 2), whereas Fixed strategies need only follow
a single rule to keep doing the same thing.

When a fitness cost of repeating the egg-
provided role in sequential games was intro-
duced, however, CAD became more common,
and DorC completely disappeared when this cost
was sufficiently high (Fig. 4). When the second of
two consecutive clutches provided only about
75% as many eggs as the first (i.e. repco=0.75),
mean fitness declined to about 0.8, perhaps in
response to a relatively high diversity of
algorithms. But with the cost at 50% or more
reduction of the second clutch (i.e. repcoE 0.5),
fitness recovered to higher levels, and CAD
predominated.

Discussion

This analysis has demonstrated that strategies
able to achieve and maintain complementarity of
binary behavior without signaling intentions can

evolve consistently in a classifier system model of
iterated pairwise interactions. The strategies
require memory of responses in only the
immediately preceding interaction and can
consist of as few as three very simple rules.
Interaction sequence lengths of about 10 or more
are required for these complementarity strategies
to predominate among the evolutionary end-
products.

The CAD strategy, which features alternation
of C and D out of phase with its partner, encodes
the role-swapping logic characteristic of simul-
taneous hermaphroditism. We have shown that
CAD predominates when there is a substantial
fitness cost of a player’s repeating C in
consecutive games; with little or no cost of such
repetition, DorC predominates. The DorC
strategy, in which an individual repeats the
response complementary to the one being
repeated by its partner, produces opportunistic
gender-role playing as in many sequential
hermaphrodites and other species capable of
facultative gender change.

Note that the scenario in the runs presented
here, in which each individual’s fitness is
determined by its mating success with one or
more randomly chosen partners, resembles the
situation faced by non-selfing individuals in
populations at very low densities. The prospect
of having very few mating opportunities can
create the sort of strong selective advantage for
hermaphroditism (e.g. see Tomlinson, 1966) that
produced DorC and CAD strategies in our
simulations. Even allowing for significant fitness
advantages of permanent gender specialization
in gonochores (corresponding to our invariant
types AllC and AllD), hermaphroditic mutants
should invade and replace the gonochores when
mating opportunities are sufficiently rare (see
Appendix B). The evolution of simultaneous
from sequential (or facultative) hermaphro-
ditism, or vice versa, appears much less likely
than the evolution of hermaphrodites from
gonochores, according to the analysis presented
here (cf. Premoli & Sella, 1995b, p. 34).

Benthic polychaete worms encompass a broad
range of biparental reproductive types, including
31 species of simultaneous hermaphrodites (e.g.
Ophryotrocha diadema emphasized above), 36
sequential hermaphrodites, and an unknown but
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probably larger number of gonochoristic species
(Premoli & Sella, 1995b). Certain fishes, particu-
larly the seabasses of the family Serranidae, also
exhibit these types (e.g. Fischer & Petersen,
1987). In all of the well-studied cases of
hermaphroditism in these groups, partners signal
to each other via courtship displays and often
physical contact before mating, facilitating
physiological compatibility and reducing the
possibility of wasting gametes during mating
itself. Though apparently expensive in both time
and energy (e.g. see Fischer, 1980, 1984; Sella,
1985), courtship presumably increases the overall
energetic and reproductive efficiency of the
mating process. The initial transient phase of the
strategies evolved by EvA, by the end of which
complementarity has been attained, correponds
in some sense to this expensive yet important
pre-reproductive phase in natural systems. But
our analysis demonstrates that signaling is not a
prerequisite for the evolution of behavioral
strategies ensuring the sort of complementarity
essential for phenomena like hermaphroditism.

Similarly, we have made no attempt explicitly
to incorporate the advantages of egg (or sperm)
trading into the simulations, though these are
undoubtedly important to a full understanding
of simultaneous hermaphroditism in many taxa.
Our focus has instead been on the logical
structure and the evolutionary dynamics that
generate simultaneous hermaphroditism under
minimal assumptions. Such phenomena as egg
parceling by seabass (Fischer & Petersen, 1987)
and maturation of fewer eggs but more
frequently within the polychaetes (Premoli &
Sella, 1995b) may, like signaling, represent
evolutionary polish on an already established,
simultaneously hermaphroditic reproductive
mode.

We believe that the concept of complementar-
ity will prove useful in clarifying a considerable
number of pairwise interactions in nature. Our
focus here has been on sexual reproduction and
some of its main variations. We have also
alluded to a parental-care example in the Intro-
duction. Food provisioning (e.g. Wilkinson,
1984, 1990) may sometimes fit the pattern,
though extensive sequences of provisioning
between two unrelated individuals have
rarely been documented. In contrast, grooming

behavior, particularly in mammals (Seyfarth &
Cheney, 1984; Hart & Hart 1992), is well studied
and often yields long sequences of reciprocity.
All of these types of interactions have been
addressed mainly using theory derived from the
Prisoner’s Dilemma, in which mutual co-
operation is assumed to be simultaneous, rather
than the kind of asynchronous complementarity
characteristic of these examples. Among other
things, the complementarity framework may be
less dependent on the restrictive PD assumption
of simultaneous decision-making (see Dugatkin
et al., 1992; and see below), since in at least some
cases one behavior (e.g. egg release) may
immediately trigger complementary behavior
(e.g. sperm release) by the other player.

Dominance (and submissiveness) may also
represent another important type of complemen-
tarity, in which the risk of injury may lead even
to the relatively arbitrary settling of differences
in social rank by convention. ‘‘Dear enemy’’
relationships among neighboring territorial
males map such conventional rank differences
onto space (Ydenberg et al., 1988; Qualls &
Jaeger, 1991; Fox & Baird, 1992; Godard, 1993).
These and other examples of complementarity
should be identified and considered carefully
from this non-PD viewpoint.

A number of possible modifications of the
classifier system model might improve and
extend the present analysis.

1. The sensitivity analysis indicated that larger
populations increase both mean fitness and the
dominance of DorC strategies. Though ad hoc
run sets have demonstrated that reducing the
fitness multiplier (repco) still allows CAD to
dominate at larger population sizes, a more
thorough exploration of larger populations is
clearly needed.
2. Asymmetrical payoff matrices need more
extensive analysis. For example, the dynamics
may be different if a third possible response (i.e.
Q=quit) is added to the behavioral array,
enabling a player to opt out of an ICD with
another who fails to cycle through both the
higher- and lower-payoff roles.
3. Additional simulations need to be conducted
that allow more extensive memory to be used. It
is already clear that new and otherwise
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impossible strategies can appear in this case (e.g.
one that alternated two consecutive cooperations
with two consecutive defections). It seems likely
that rules invoking a ‘‘quit’’ response would
often need to rely on additional memory to be
effective. Perhaps much longer sequences of
generations will also be needed to produce the
potentially more complex strategies based on
additional memory.
4. Recent work on the alternating Prisoner’s
Dilemma (Nowak & Sigmund, 1994; Frean,
1994; Leimar, 1997) suggests another way of
analysing a subset of situations in which
complementarity might be expected. In cases like
egg-trading in fishes or grooming in mammals,
where cooperation offered by one partner can be
assumed to be automatically accepted by the
other, then complementarity may be represented
simply as a sequence of cooperative behaviors
alternating between individuals. This way of
conceptualizing these behavioral sequences does
not require a simultaneous defection to match
each cooperation; instead, ‘‘defection’’ means
failure to provide the cooperative act by an
individual during its turn to respond. It would be
instructive systematically to compare results
obtained under this scenario with those gener-
ated by our approach.

We hope that the analysis presented here will
stimulate empirical work, including both ad-
ditional documentation of complementarity and
experimental studies capable of identifying the
behavioral rules underlying the strategies of
importance in nature.

We close with some words once sung about
reciprocity, very much in the context of
reproductive behavior:

And in the end,
The love you take
Is equal to the love you make.
(The Beatles, Abbey Road)*

* Lyrics taken from ‘‘The End’’ by John Lennon
and Paul McCartney, by kind permission of
Sony/ATV Music Publishing Ltd.
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APPENDIX A

Expected Fitnesses of CAD and DorC in an ICD
against an Invariant Response

We focus here on the functionally identical,
minimal-transient forms of DorC and of CAD
illustrated in the upper portion of Fig. 2. For any
of these forms of DorC or CAD, whether this
focal individual and any opponent responded
identically or differently from each other in the
previous game completely determines the prob-
ability that the focal repeats its previous play or
switches behavior in the next game. This is true
independently of the specific responses (i.e. C or
D) by the two players and of entries in the payoff
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matrix. In this sense, the expected sequences of
responses are equivalent, whether the behav-
iorally invariant individual is AllC (i.e. function-
ally identical to the one-rule algorithm /:C) or
AllD (i.e. /:D). Moreover, the expected payoffs
against the two behaviorally invariant opponents
are the same when the ICD is symmetrical. To
keep things simple here, we therefore use the
payoff matrix in Fig. 1(a) and consider only AllC
as the behaviorally invariant opponent.

When DorC plays AllC, the number of games
required to achieve complementarity is uncer-
tain. The probability that the first game must be
played to achieve complementarity is of course
1.0; the chance that at least one additional game
must then be played to reach complementarity is
0.5; the chance that yet another game is required
is 0.25; and so forth—generating a geometric
series for the expected number of games that
sums to 2. This means that for an ICD sequence
long enough for non-negligible values in the tail
of this series to be counted, DorC and AllC
average one non-complementary game, followed
by complementarity. Once DorC has attained
complementarity with an opponent, it locks in
that behavior through the entire sequence. For a
‘‘long’’ sequence of length n, this and the payoff
matrix of Fig. 1(a) ensure that the expected
payoff per game is based on the average case of
no fitness points in the first game and one point
in each subsequent game, or (n−1)/n. As the
sequence length n is increased, this expected
payoff per game approaches 1.0 asymptotically.
Thus DorC is expected to average slightly less
than 1 fitness unit per game in long ICD
sequences against a behaviorally invariant
opponent.

Determining the expected payoff per game for
CAD against a behaviorally invariant opponent
is only slightly more complex. Let (C,D)
represent a response that is equally likely to be
C or D. In a game against AllC, (C,D) has an
expected payoff of 0.5, since DC pays 1 but CC
pays 0, and these outcomes are equally likely.
Suppose that we visualize such a sequence as a
series of cycles, each beginning with (C,D) plays
by CAD until complementarity is achieved, after
which CAD immediately plays C in a futile and
unrewarded attempt to initiate alternation. This
cycle then repeats for the entire ICD sequence.

By the same argument as for the probabilistic
initiation of the DorC-vs.-AllC sequence de-
scribed above, the expected number of (C,D)
plays per cycle is two, twice as many as the
number of zero-payoff C plays, resulting in an
overall expectation of one-third of a fitness point
per game. Simply following the probability tree
of CAD plays across games indicates rapid
convergence on the expected two plays of (C,D)
for each play of C.

For completeness, consider the expected
payoff for CAD and DorC playing each other.
Again breaking the game into cycles, we find that
the expected number of games to achieve
complementarity is still two, because having
both players rather than a single player choosing
responses at random has no effect on the
probability of achieving complementary behav-
ior. Once complementarity is reached, DorC
repeats its previous behavior, and CAD switches,
generating a zero-payoff, non-complementary
combination, followed by the beginning of a new
cycle. This is the same pattern as for CAD vs.
AllC, thus yielding the same expected payoff per
game.

To summarize, DorC achieves high fitness
against a behaviorally invariant opponent in an
ICD of more than a few games, whereas CAD
fares poorly. Moreover, CAD vs. DorC gener-
ates the same low fitness expectation as for CAD
against the behaviorally invariant opponent.

These results can be obtained more elegantly
and rigorously by expressing the transitions
between response combinations as a first-order
Markov process (Nowak et al., 1995), under the
assumption that rare response errors occur. Let
strategy p=(p1, p2, p3, p4) and strategy q=(q1,
q2, q3, q4), where pi and qi are probabilities of
playing C in the next round, given the response
combination i in the present round, and the
i=1 . . . 4 correspond to the focal-other re-
sponse combinations CC, CD, DC, and DD,
respectively. In this notation, the minimal-transi-
ent versions of strategies considered in this
appendix are: DorC, (0.5, 1, 0, 0.5); CAD, (0.5,
0, 1, 0.5); AllC, (1, 1, 1, 1); and AllD, (0, 0, 0,
0). For an ICD sequence, a 4×4 transition
matrix can be constructed, for which each entry
is a probability derived from appropriate
elements of the ordered quadruples representing
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the two strategies. For example, the probability
that the response combination CC will be
followed by DD is (1− p1)(1− q1); in an ICD
between CAD and DorC, this is
(1−0.5)(1−0.5)=0.25. For infinitely long
ICD sequences, the proportion of games
resulting in each response combination is then
the left eigenvector of the transition matrix for
the eigenvalue 1. The payoff for a particular
strategy is the sum of payoffs for each response
combination, weighted by its frequency accord-
ing to this stationary distribution. See Nowak
et al. (1995) for details.

APPENDIX B

Conditions for Invasion of a large Population of
AllC & AllD by DorC and CAD

As in the simulations, assume that mating
partners are drawn at random from the
population and that fitnesses are determined in
long ICD sequences according to the payoff
matrix of Fig. 1(a). Then frequency-dependent
selection will maintain the ratio of AllC to AllD
very close to 1:1, since if either type becomes less
abundant, it is more likely to pair with the other
type and thus achieve higher fitness. Because the
1:1 ratio implies that each invariant responder is
equally likely to draw a partner of the same or
opposite type, the expected payoff for such
partnerships is 0.5. Allowing for the possibility
that repeated cooperation by the same individual
in successive games multiplies the resulting
fitness by the repeat coefficient r, this expected
payoff becomes r/2.

A DorC mutant can always successfully
invade this population of invariant strategies by
virtue of having a higher expected payoff (r) in
a long sequence with an invariant strategy than
invariants have with each other (r/2). Similarly,
a CAD mutant can invade the population of
invariants whenever the expected payoff in a long
sequence with an invariant exceeds r/2. When
rQ 1, CAD expects to gain higher payoffs with
AllD (i.e. 1/3, as shown in Appendix A) than
with AllC (i.e. r/3, decrementing for repeated
cooperation). Thus, the expected payoff for
CAD with a random invariant strategy is the
average of the AllD and AllC payoffs, or
(r+1)/6, which exceeds r/2 and permits invasion
whenever rQ 0.5.

Note that a DorC population is extremely
unlikely to be invaded by a mutant CAD, and
vice versa. With rQ 1, the expected payoff in a
long CAD-DorC ICD sequence is (r+1)/6, just
as for CAD with an invariant equally likely to be
AllC or AllD (cf. Appendix A). This precludes
successful invasion of a CAD population by
DorC, because CAD strategies have an expected
payoff of almost 1.0 when interacting with each
other. A successful invasion of a DorC
population by CAD also seems implausible,
because (r+1)/6 exceeds the DorC-DorC payoff
of r only when rQ 1/5.

These results show that when pairings are
random, populations of invariant strategies are
readily invasible by DorC mutants—and by
CAD mutants when repeated cooperation by a
single individual reduces the expected payoff
sufficiently. Populations of DorC or CAD
strategies are very unlikely to be successfully
invaded by a mutant of the other strategy type.


