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SYNOPSIS. Sexual selection theory predicts a coevolution between male sexual ornamentation 
and female preference. The implication of this prediction for sensory ecology is that there should 
be a tight coupling between the physiology of male signal production and the physiology of 
female signal reception. Indicator models of sexual selection predict that male ornamentation is 
correlated with male condition, and that female preference is correlated with male ornamentation. 
Indicator models of sexual selection have a conceptual overlap with resource acquisition and 
investment models of behavioral ecology. Empirical studies with fishes, particularly with guppies 
(Poecilia reticulata) and threespine sticklebacks (Gasterosteus aculeatus), suggest a strong 
connection between acquired resources, male condition, male ornamentation, male courtship, and 
female preference.
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INTRODUCTION

Whereas behavioral ecology focuses on how major 
categories of behavior such as avoiding predators, 
feeding, mating, parental care, contribute to fitness (Krebs 
and Davies, 1987; Sargent, 1990), sensory ecology 
focuses on the sensory adaptations to accomplish these 
classes of behavior (Dusenbery, 1992). If the behavior of 
interest involves intraspecific interaction and 
communication, such as courtship and mate choice, then 
integrating these two approaches can reveal insights into 
how and why signalers and receivers are coadapted.

Since Darwin’s (1871) landmark treatise, evolutionary 
biologists have been fascinated by the phenomena of 
sexual dimorphism and sexual selection. Darwin was 
particularly intrigued by his observation that the males of 
most species have elaborate ornaments that are 
ostentatiously displayed during intrasexual competition 
and courtship; thus, he proposed his theory of sexual 
selection, which can be defined as the differential ability of 
different phenotypes to obtain mates and reproduce, due 
to two forms of intraspecific interaction: 1. competition 
within a sex for access to mates or to resources for mating 
(intrasexual selection); and, 2. mate choice between the 
sexes (intersexual selection). Morphology and behavior 
conducive to fighting ability (e.g., antlers in deer) are 
thought to have evolved through intrasexual selection; 
whereas, morphology and behavior involved in courtship 
(e.g., the peacock’s tail) are thought to have evolved 
through intersexual selection (see Anderson, 1994, for 
review). In most species, females re the limiting sex; that 
is, female reproduction is limited primarily by resources, 
whereas male reproduction is limited primarily by the 
number of females with whom they mate (Bateman, 1948; 
Williams, 1975). Consequently, most studies of sexual 
selection have focused on males.

Darwin (1871) himself recognized that these ornaments 
must have survival costs for their bearers; thus, he 
hypothesized that the survival costs of male ornamentation 
re offset by benefits in obtaining mates. An implication of 
Darwin’s theory of sexual selection is that male ornaments 
act as signals to rival males, females, or both. There has 
been relatively little analytical modeling of intrasexual 
selection; however, genetic models of intersexual selection 
illustrate that through assortative mating, male ornaments 
and female preferences may coevolve (e.g., Fisher, 1915, 
1930; O’Donald, 1980; Lande, 1980, 1981; Kirk-patrick, 
1982). This coevolutionary process, between signaler and 
receiver, has profound implications for sensory ecology. 
Not only would one predict a correlation between male 
ornament and female preference, but also a coupling of 
the underlying physiologies of male signal production and 
female signal reception.

We are intrigued by a particular class of sexual selection 
models, which are collectively referred to as indicator 
models (see Andersson, 1994, for review). In these 
models, male ornaments evolve to "indicate" or "honestly 
signal" some aspect of male phenotypic quality, genetic 
quality, or both, and female preference evolves to be 
correlated with the degree of male ornamentation (e.g., 
Zahavi, 1975, 1977; Hamilton and Zuk, 1982; Hasson, 
1989, 1997; Grafen, 1990a, b; Folstad and Karter, 1992; 
Price et al., 1993; Wolf et al., 1997). These models provide 
a conceptual basis for understanding what is being 
signaled by males. In addition, these models provide a 
conceptual link to the dynamics of resource acquisition, 
and subsequent investment of acquired resources into 
components of fitness (e.g., Houston and McNamara, 
1988; Mangel and Clark, 1988).

Animals acquire resources throughout their lives. Although 
these resources are incorporated into the phenotype in a 
variety of different ways, they ultimately contribute to an 
animal’s fitness, or lifetime reproductive success (e.g., 
Houston and McNamara, 1988; Mangel and Clark, 1988; 
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Williams, 1992; Sargent, 1990; Sargent et al., 1995). 
Behavioral ecologists use the term "condition" to refer to 
an animal’s overall quality in terms of acquired resources, 
with the implicit assumption that higher condition leads to 
higher fitness. Within the paradigm of dynamic 
optimization, "condition" can be thought of as all axes in 
the state space that are relevant to fitness (e.g., body size, 
energy reserves, immunocompetence). However, fisheries 
biologists have traditionally used the term, "condition," to 
refer to an estimate of energy reserves by scaling weight 
to length (see Bolger and Connolly [1989] for review). This 
is the definition of "condition" that we will adopt here; 
however, other state variables are clearly important 
determinants of fitness as well.

There is considerable empirical support for the importance 
of energy reserves for reproductive success in fishes (see 
Sargent [1997] for review). First, it is well known that 
energy reserves decline during the breeding season, and 
that fishes that have not reproduced have higher energy 
reserves at the end of the breeding season that fishes that 
have reproduced (e.g., Unger, 1983; Sargent, 1985; 
Reznick and Braun, 1987, Chellapa et al., 1989; 
FitzGerald et al., 1989; Sabat, 1994). Second, many 
studies manipulate diet or ration, and these studies show 
that individuals that receive more supplemental food have 
higher reproductive success, survival between brood 
cycles, or both (e.g., Townshend and Wootton, 1984; 
Ridgway and Shuter, 1994). Third, Sargent (unpublished) 
found with fathead minnows (Pimephales promelas) that 
"condition index" (i.e., weight scaled to length) at the 
beginning of the breeding season is positively correlated 
with the amount of stored neutral lipids, and with the 
number of offspring produced during the breeding season. 
Thus, acquired resources are clearly tied to reproductive 
output in fishes.

Behavioral strategies are said to be "condition-dependent" 
if an individual’s best strategy depends on its condition, or 
on its condition relative to that of other members of the 
population. For example, during male-male competition for 
females in fishes, larger males court females, whereas 
smaller males attempt to mate forcibly or sneakily (see 
Gross, 1984, 1996 and Farr 1989, for reviews). Females 
may benefit by mating with high condition males directly 
(i.e., phenotypic benefits such as more resources for 
offspring, lower levels of pathogens that could infect the 
female or offspring), or indirectly (i.e., genetic benefits 
inherited by the offspring, e.g., Moore, 1994). If females do 
benefit by mating with high condition males, then sexual 
selection theory predicts that males will "honestly signal" 
their overall quality to prospective females, and that 
females will base their mate choice on these male signals 
(Zahavi, 1975, 1997; Kodric-Brown and Brown, 1984; 

Grafen, 1990a, b; Price et al., 1993). Honest signaling 
theory assumes that signals are costly to produce, and 
that a given level of signal is more costly for low-condition 
than high-condition males. Many of the predictions of 
honest signaling have been supported in fishes (see 
below). Thus, sexual selection theory potentially has broad 
implications for sensory ecology and intraspecific 
communication.

TWO MODEL SYSTEMS: THE GUPPY AND THE 
THREESPINE STICKLEBACK

Although there are many excellent studies of sexual 
selection on a wide spectrum of fish species, two species 
stand out as being especially appropriate for this review: 1. 
the guppy, Poecilia reticulata, which has internal 
fertilization and females that give birth to fully independent 
juveniles (see Meffe and Snelson [1989] for review); 2. the 
threespine stickleback, Gasterosteus aculeatus, which has 
external fertilization and male parental care of the 
developing eggs and newly hatched fry (see Wootton 
[1976] for review). Although these two species have very 
different mating systems and reproductive biology, they 
share much in common in terms of sexual selection and 
signaling between the sexes. We caution that these 
species exhibit enormous geographical variation (guppies, 
Endler, 1977, 1978; sticklebacks, Bell and Foster, 1994), 
so the results that we cite here are not true for all 
populations within a species; we discuss some of these 
"exceptions" below.

In both species, males develop a carotenoid-based, 
orange to red breeding coloration (guppies, Houde, 1987; 
sticklebacks, Wootton, 1976), and this breeding coloration 
is positively correlated with carotenoids in the diet 
(guppies, Kodric-Brown, 1989; sticklebacks, Bakker, 
personal communication, see also Frischnecht, 1993); 
positively correlated with condition index (weight scaled to 
length: guppies, Nicoletto, 1991, 1993; sticklebacks, 
Milinski and Bakker, 1990; Frischknecht, 1993; Bakker and 
Mundwiler, 1994); positively correlated with courtship 
intensity (guppies, Nicoletto, 1993; sticklebacks, Bakker 
and Milinski, 1991); and positively correlated with female 
preference (guppies, Houde, 1987; Endler and Houde, 
1995; sticklebacks, Bakker, 1993). Finally, if males of both 
species are experimentally infected with parasites, 
parasitized males have reduced breeding coloration and 
are less preferred by females than non-parasitized controls 
(guppies, Houde and Torio, 1994; sticklebacks, Milinski 
and Bakker, 1990). A clear pattern has emerged; male 
breeding coloration, energy reserves, courtship display 
rate, parasite load, and attractiveness to females are all 
interrelated.
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Considerable information is also known about the spectral 
sensitivities and the visual ecologies of each species. For 
example, based on microspectrophotometry of visual 
pigments, both species have four sets of retinal cone cells 
(guppies, Archer, 1988; Rush, 1995; sticklebacks, Baube, 
1998; Baube, personal communication), which includes a 
set of ultraviolet cones, and three sets of cones in the 
"human-visible" wavelengths. In sticklebacks, both spectral 
sensitivity and male breeding coloration have been shown 
to correlate with the photic environment.

In "tea-stained" lakes in British Columbia, Canada, the 
short wavelengths attenuate rapidly, which creates a 
"reddish" photic environment; whereas, in mesotrophic 
lakes there is a broader spectrum of wavelengths of light 
(McDonald and Hawryshyn, 1995; McDonald et al., 1995). 
There is a tendency for male breeding coloration to be 
black (rather than red) in these tea-stained lakes 
(Reimchen et al., 1985). Using optic nerve recording, 
McDonald and Hawryshyn (1995) found that sticklebacks 
in tea-stained lakes have their peak spectral sensitivity 
shifted to longer wavelengths relative to fish in 
mesotrophic lakes. McDonald et al. (1995) hypothesized 
that black breeding coloration may be favored in 
tea-stained lakes, due to its higher contrast against a red 
background than would be the case for red breeding 
coloration. They tested this hypothesis with females from a 
mesotrophic lake, where males have the more typical red 
breeding coloration. They examined female preference for 
red or black male video images against a red or blue 
background, which roughly approximated the two photic 
environments. They found that females preferred red 
males against a blue background, but black males against 
a red background, which supports their hypothesis 
(McDonald et al., 1995). Thus it appears that photic 
environment can affect spectral sensitivity and female 
preference of male breeding coloration. It would now be 
interesting to examine condition dependence and honest 
signaling in non-red or black males from these tea-stained 
lakes.

In guppies, it appears that geographic variation in male 
coloration depends more on predation regime than on 
photic environment (Endler, 1977, 1978). Basically, orange 
breeding coloration is negatively correlated among 
populations with the intensity of predation on guppies. 
Female preference for male orange coloration is stronger 
in populations with lower predation intensities (Endler and 
Houde, 1995). In addition, Endler and Houde (1995) also 
found that male orange coloration correlates with the 
photic environment; orange coloration increases with the 
water orange ratio (i.e., the relative transmission of long 
wavelengths through the water, which is calculated as the 
integral of 400-550 run absorbance divided by the integral 

of 550-700 nm absorbance; see Endler and Houde 1995) 
among populations. Interestingly, this appears to be the 
opposite trend found in sticklebacks. In sticklebacks, 
redder photic environments are correlated with black 
breeding coloration, and female preference for black males 
over red males (McDonald and Hawryshyn, 1995; 
McDonald et al., 1995; Reimchen et al., 1985). In guppies, 
a redder photic environment is correlated with stronger 
preference for orange colored males (Endler and Houde, 
1995). A possible resolution to this disparity is that 
tea-stained stickleback habitat attenuates the short 
wavelengths more completely than comparable guppy 
habitat (guppy habitat, Endler, 1991; stickleback habitat, 
McDonald et al., 1995). In both guppies and sticklebacks, 
when the color of the ambient light is manipulated to 
coincide with male breeding coloration (thus reducing color 
contrast of the male ornament), female preference for 
male coloration disappears (guppies, Long and Houde, 
1989; sticklebacks, Milinski and Bakker, 1990). It would be 
interesting to conduct artificial selection experiments 
where photic environment is manipulated, and to look for 
evolutionary responses in spectral sensitivity, female 
preference and male coloration.

A common feature of all the above cited studies on 
condition dependence and honest signaling in guppies and 
sticklebacks is that they are all based on visual cues. It 
would be interesting to see if other sensory modalities play 
a role in honest signaling in these species.

OTHER SENSORY MODALITIES

It is well known that fishes send and receive acoustical, 
low frequency mechanosensory, chemical, and electrical 
signals, in addition to visual signals (see Atema et al., 
1988, for review). Moreover, cues other than visual cues 
are known to play a role in courtship and agonistic 
encounters in many species. However, it is not known 
whether these other sensory cues act as condition 
indicators. Because the active production of electrical 
signals is relatively restricted taxonomically in fishes, we 
choose not focus on this sensory modality; however, there 
are many excellent examples and reviews of courtship and 
mate choice using electrical cues (e.g., Hagedorn and 
Heiligenberg, 1985; Heiligenberg, 1993; Moller, 1995; 
Tricas et al., 1995). Instead, we briefly review literature on 
acoustical cues, low frequency mechanosensory cues, and 
chemical cues, and discuss their potential relevance to the 
phenomena of condition dependence and honest 
signaling.

Acoustical cues

Most research on fish acoustical communication focuses 
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on the mechanisms of sound production and detection 
(see Tavolga et al., 1981; Hawkins, 1993, for reviews). 
Acoustical communication is taxonomically widespread in 
fishes. Here we focus on a small set of species for which 
there are data on acoustical cues and courtship.

Vocalization in fishes requires modification of the 
swimbladder, pectoral fins or pharyngeal teeth (Tavolga, 
1971; Sand and Hawkins, 1973; Schwartz, 1974; 
Kratochvil, 1977; Crawford, 1986; Ladich, 1989; Hawkins, 
1993; Connaughton and Taylor, 1996; Ladich, 1998). Low 
frequency sounds are produced by drumming muscles 
attached to the swimbladder (Tavolga, 1971; Brantley and 
Bass, 1994; Connaughton and Taylor, 1996). High 
frequency sounds are produced by bony attachments to 
the pectoral fin, or scraping of the pharyngeal teeth 
(Schwartz, 1974; Kratochvil, 1977; Torricelli et al., 1990; 
Fine et al., 1996). The specialization of the sound 
production organs are usually confined to males and may 
vary intrasexually based on size, and possibly age. In 
water, low frequency sounds travel farther and are more 
easily localized than high frequency sounds (Dusenbery, 
1992). This suggests that low frequency sounds should be 
used to court at a distance, whereas high frequency 
sounds should be used during interactions that involve 
close contact between individuals. However, such bimodal 
sound production has never been reported. One possibility 
is that it is costly to possess dual structures (drumming 
muscles and stridulation of pectoral fin or pharyngeal 
teeth) for sound production. Another possibility is that if 
fish were to produce an intense sound type at a long 
distance and another less intense sound type when the 
receiver is nearby (Kenyon, 1994), then the signal sender 
can attract mates at both long and short distance without 
investing in dual structures for two specific types of sound 
production. Finally, the energy required to produce a low 
frequency sound of equal intensity is greater than that for a 
high frequency sound (Dusenbery, 1992). This suggests 
that the cost of sonic communication among fishes may 
vary depending on the type of sound producing organ.

Let us first consider drumming. Sonic muscle size is tightly 
associated with body size in larger males; immature males 
show very little enlargement of sonic muscles, whereas 
adult males is season show radically enlarged muscle 
tissue (Templeman and Hodder, 1958; Bass and 
Marchaterre, 1989; Brantley et al., 1993a; Connaughton 
and Taylor, 1995). The enlargement of sonic muscle is 
induced by steroid hormones (Brantley et al., 1993b; 
Connaughton and Taylor, 1995). One might expect sound 
production to be constrained by body size, because, in 
general, larger fish will have larger swimbladders with 
lower resonant frequencies (Fine et al., 1977). Thus one 
might expect the fundamental frequency of a fish 

vocalization to be negatively correlated with body size. 
Interestingly, this appears not to be the case for drumming. 
With drumming, the fundamental frequency depends on 
sonic muscle contraction rate (Fine et al., 1977), which in 
turn is controlled by a central nervous system vocal circuit 
(Bass and Baker, 1990, 1991). In the midshipman 
(Porichthys notatus), there two types of sexually mature 
males: large, territorial, egg-guarding males (i.e., Type-I 
males), and smaller males that "sneak" fertilizations (i.e., 
Type-II males, Brantley and Bass, 1994). The larger Type-I 
males have much larger sonic muscles, have much larger 
motoneurons and pacemaker neurons in their vocal sonic 
circuits, and produce higher fundamental frequencies than 
do the smaller Type-II males (Bass and Marchaterre, 
1989; Bass and Baker, 1990). Although it appears that 
fundamental frequency is independent of body size for 
Type-I males (Bass and Baker, 1990, Figure 2), it would 
now he interesting to see if fundamental frequency, or the 
duration of the call (e.g., Fine, 1978), is correlated with 
condition (weight scaled to length) or some other index of 
energy reserve.

Unlike drumming muscles, pharyngeal teeth and pectoral 
fin structures may not have the same relationship between 
body size and signal capabilities. However, it is likely that 
larger pectoral fins or larger pharyngeal teeth will produce 
higher amplitude sounds as well. It is possible that high 
frequency communication might be an example of sensory 
drive or sensory bias while lower frequency 
communication is an example of condition-dependent 
mate-choice. More work needs to be done on the 
relationship between body size and frequency of stimuli. 
Kratochvil (1977) and Ladich and Yan (1998) report that 
high frequency sound production in croaking gouramis is 
correlated with body size, with smaller fish producing 
higher frequency sounds than larger fish. Furthermore 
croaking gouramis have relatively larger sonic muscle 
mass for their body size (Kratochvil, 1977).

Sound reception in most teleosts is most efficient in the 
low frequencies, which correlates with the sound 
producing organ of the fishes (Popper and Fay, 1973). 
However several fishes have modifications of the 
acoustical system that increases sensitivity to high 
frequencies. In fish with swimbladders, air filled tubes or 
bones directly attached to the bladder increase the 
sensitivity of the ear to high frequency sounds ([is greater 
than] 1 khz) (Schuster, 1989; Hawkins, 1993). Similar air 
filled passages around the gill are used in anabantoid fish 
to increase their sensitivity to high frequency sounds. 
Removal of air filled bubbles produces a dramatic decline 
in the sensitivity of these fish (Yan, unpublished). 
Researchers have shown a general correlation between 
sound production organs and acoustical sensitivity in 
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fishes for low frequency sounds. Ladich and Yan (1998) 
have shown a similar relationship for fish that produce high 
frequency signals. It would be interesting to see if the 
correlation between high frequency sound production and 
sound reception is also correlated with condition.

The function of sound production has received less 
attention than has its physiology. Work on sound 
production and sound interception in the bicolor damselfish 
(Stegastes partitus) indicates that vocalization in this fish is 
functionally similar to bird song. Males exhibit responses to 
"intruder vocalizations" and "stranger vocalizations" 
(Myrberg, 1981; Myrberg et al., 1986; Myrberg et al., 
1993). Females are attracted to both the visual display and 
the acoustical signature of a male (Myrberg, 1981; 
Myrberg et al., 1986). Sound production in midshipman 
(Porichthys notatus) is thought to have a similar function; 
the vocalizations of large calling males is attractive to 
females (Brantley and Bass, 1994). Substrate drumming is 
exhibited by the mottled sculpin (Cottus bairdi), which 
knocks its head against the substrate (Barber and 
Mowbray, 1956; Whang and Janssen, 1994). This low 
frequency signal, from a fish with no swimbladder travels 
rapidly along the substrate with little attenuation. This 
channel would stimulate the upper reaches of the lateral 
line and the lower range of the auditory system.

In general the physiological, neurobiological, and 
morphological aspects of fish vocalization have outstripped 
research on the functional bases of communication, 
beyond a small set of specific examples (e.g., Myrberg, 
1981; Crawford, 1986; Brantley and Bass, 1994; Whang 
and Janssen, 1994; Ladich, 1998) that have been studied 
in detail. The functional relationship between sound 
production as a signal and the response of the receiver is 
unclear. Future research should focus on signal 
transmission through the environment, which is 
complicated by thermoclines and the body temperatures of 
the fish (both for sound production and hearing). Similarly, 
we need more field and laboratory studies of how fish use 
sound. Research in the future should examine the 
relationship between age, body size, and sonic muscle 
mass. Because signal production requires a large 
expenditure of energy to maintain and produce, they have 
the prerequisites to be honest signals of condition. 
Correlations between condition, sound production, and 
mate choice should be easy to acquire. It is clear that in 
the last few years the gap between functional and 
proximate mechanisms of acoustical communication has 
narrowed; now there is an opportunity to narrow the gap 
further.

Low frequency mechanosensory cues

A common feature in both courtship and agonistic 
encounters in fishes is lateral display and quivering 
(Bleckmann, 1993; Nelissen, 1991). A signaling fish aligns 
itself beside a recipient, often within a few centimeters, 
and vibrates its body with fins erect. Although it would 
appear that this behavior generates a low frequency 
mechanosensory stimulus that the recipient of the display 
could detect with its lateral line system, there have been 
surprisingly few tests of this hypothesis (see Bleckmann, 
1993).

Satou et al. (1994a, b) have examined mechanosensory 
stimuli generated by female hime salmon (Oncorhynchus 
nerka) during spawning. They examined male responses 
to vibrational and visual components of female courtship 
and spawning behavior using dummy females. If both 
components were present, males spawned; however, if the 
dummies did not vibrate, then males did not spawn (Satou 
et al., 1994a). If males’ lateral lines were blocked with 
cobalt, which is known into interfere with the function of 
lateral line hair cells, then males failed to spawn to 
vibrating dummies (Satou et al., 1994b). These 
experiments indicate the importance of the lateral line in 
perceiving vibrational cues. Now it would be interesting to 
examine male mechanosensory cues as potentially honest 
signals to females.

We have undertaken such a study with the green swordtail 
(Xiphophorus helleri). Our data are very preliminary; 
however, using posterior lateral line trunk nerve recording 
we found that the lateral line system of the female 
swordtail was most sensitive to frequencies between 20-50 
Hz, and a high speed video analysis of male courtship 
suggests they generate a particle acceleration well within 
the peak of female sensitivity (Rush et al., unpublished 
data). We suggest that some component of the male 
lateral display (e.g., amplitude, frequency) in the green 
swordtail may be an indicator of condition, and we intend 
to pursue this further.

It is noteworthy that male display rate (evaluated visually 
by human observers) is correlated with condition and 
female preference in guppies (Poecilia reticulata, Kennedy 
et al., 1987; Nicoletto, 1993), three-spine sticklebacks 
(Gasterosteus aculeatus, Gross and Franck, 1979; Ridley, 
1986; but see Rowland, 1995), and bicolor damselfish 
(Stegastes partitus, Knapp and Kovach, 1991). 
Undoubtedly, much of the signaling during male courtship 
display in these species is visual; however, it would now 
be interesting to see if visual and mechanosensory stimuli 
in combination produce a larger female response than 
either stimulus alone.

Chemical cues
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Chemical cues have been long suspected to have an 
important function in the reproductive behavior of fishes 
(Noble, 1939) and in the past decade the study of sex 
pheromones in goldfish, Carassius auratus, has been an 
active area of research. Most research has focused on 
male detection of females, rather than vice versa.

Dulka et al. (1987) demonstrated that endogenous steroid 
hormones act also as sex pheromones that increase 
physiological and behavioral competence and synchrony 
of gamete release in goldfish. Sorensen (1992) and 
Sorensen and Scott (1994) envision three stages in the 
evolution of chemical sex signals, which require only minor 
reorganization of pre-existing compounds and receptors. 
First, reproductive hormones are released into the 
surrounding water as a mechanism for clearing them from 
the blood. At first, these water-borne hormones do not 
function as pheromones. Second, the expression of 
pre-existing receptors from the endocrine system on 
external chemosensory cells give the fish the ability to 
detect water-borne hormones. Thus, fish could `spy’ on the 
physiological state of conspecifics and respond 
accordingly. Third, true pheromonal `communication’ is 
achieved when controlled and reciprocal exchange of 
chemical signals occurs. Sorensen and Scott (1994) did 
not find a strong correlation between steroid production by 
female goldfish and their detection by males, which led 
them to conclude that hormonal sex pheromones are an 
example of chemical spying rather than a co-evolved 
system of reciprocal signal production and detection. 
Nevertheless, water-borne pheromones could serve as 
condition indicators.

The female preovulatory hormone, 17 [Alpha], 20 
[Beta]-dihydroxy-4-pregnen-3-one (17 [Alpha], 20 [Beta]-P 
has received the most attention. Exposure to 17 [Beta], 2 
[Beta]-P induces males to increase plasma levels of 17 
[Alpha], 20 [Beta]-P and gonadotropin, and to increase milt 
volume in salmonids (Olsen and Liley, 1993; Dittman and 
Quinn, 1994; Scott et al., 1994) and cyprinids (Dulka et al., 
1987; Yamazaki, 1990; DeFraipont and Sorensen, 1993; 
Stacey et al., 1994; Sorensen et al., 1995; Bjerselius et al., 
1995a, b). The medial olfactory tract of the male seems to 
be the location of the pheromone receptors, without which 
the full complement of spawning behavior does not 
proceed (Yu and Peter, 1990; Dulka and Stacey, 1991; 
Resink et al., 1989).

Cardwell et al. (1995) report that field-caught male 
minnows Puntius schwanenfeldi, bearing tubercles (a 
transient secondary sex character under androgen control 
developed by males during the breeding season) showed 
greater sensitivity to a female sex pheromone than males 
without tubercles. Further investigation with P. gonionotus 

revealed an important activational effect of androgen on 
olfactory receptors, leading to greater intensity of courtship 
behavior (Cardwell et al., 1995).

Females in a number of poeciliid species release a sex 
pheromone (see Liley [1982] for review). Female guppies 
Poecilia reticulata, have a sex pheromone, probably 
hexestrol dipropionate, produced by the ovary shortly after 
parturition (Amouriq, 1967 in Liley, 1982; Gandolfi, 1969; 
Crow and Liley, 1979). Sex pheromones of female 
poeciliids generally stimulate male activity, attract males 
and increase male courtship. Sumner et al. (1994) found 
that chemical cues from female sailfin mollies, when in 
combination with visual cues, resulted in large males (but 
not small males) preferentially courting females that had 
recently giving birth (i.e., fertile), over females that are 
gravid with embryos (i.e., not fertile). Given that large 
males typically court females whereas small males 
"sneak," females may use chemical cues to reduce sexual 
harassment; large males attracted by the sex pheromone 
repel subordinate males.

Information on male pheromones is much more limited. In 
swordtails (Xiphophorus), females appear to be able to 
use male chemical cues in species recognition (Crapon de 
Crapona and Ryan, 1990). Chemical stimuli from male 
fathead minnows in breeding condition attract females to a 
greater degree than stimuli from regressed males or 
females (Cole and Smith, 1992). Male threespine 
sticklebacks (Gasterosteus aculeatus) release a sex 
pheromone during courtship displays that attracts gravid 
females and repels non-territorial males (Waas and 
Colgan, 1992). Also in sticklebacks, the olfactory nerve 
appears to play an important role in nest building behavior, 
onset of courtship, and suppressed aggression against 
gravid females (Segaar et al., 1983).

In several species of gouramis female pheromones attract 
males, initiate nest construction by males, and stimulate 
the development of male breeding coloration (Liley, 1982). 
A pheromone produced by males inhibits nest building 
behavior by subordinate males and also attracts females 
(Liley, 1982). Pheromones released by male Trichogaster 
trichopterus induce female ovarian maturation and 
increased plasma levels of steroid hormones, including 17 
[Alpha], 2 [Beta] - P (Degani and Schreibman, 1993).

In summary, most chemical signaling during fish 
reproduction appears to originate from females; although, 
there is some evidence of male signaling as well. Although 
chemical cues seem to indicate reproductive state or 
receptivity, their potential role as condition indicators is 
unknown. It would be interesting to tease apart the 
separate effects of chemical cues from those of other 
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sensory cues as determinants of the outcome of courtship 
and mate choice.

SUMMARY AND DIRECTIONS FOR FUTURE 
RESEARCH

Behavioral ecology theory, particularly sexual selection 
theory and resource acquisition theory, makes specific 
predictions on communication between the sexes during 
courtship and mate choice. If signals are costly to produce, 
then theory predicts that signalers should produce signals 
in direct proportion to their condition. Receivers should be 
well adapted to discriminate the level of signal being 
produced, and thus the signaler’s condition. Sensory 
ecology provides a wealth of information on physiological 
mechanisms underlying signal production and signal 
detection; thus, a great deal remains to be learned by 
integrating behavioral and sensory ecology.

It appears that male visual cues do honestly signal 
condition to females in many cases; however, this issue 
has not been addressed explicitly for other sensory 
modalities. It seems plausible that acoustical and 
mechanosensory cues may also be condition dependent. 
However, chemical cues primarily seem to signal a fish’s 
sex and reproductive state. It may well be that different 
sensory modalities signal different aspects of overall 
condition. It is clear, however, that integration of behavioral 
and sensory ecology, with regard to the question of sexual 
selection and resource acquisition, is still in its infancy. 
Below we make some specific suggestions for directions 
for future research.

1. Other measures of condition

Throughout this discussion, we have focused primarily on 
stored energy reserves (measured directly or estimated as 
being proportional to weight scaled to length) as our 
measure of condition; however, body size and 
immunocompetence may also be important determinants 
of lifetime reproductive success.

First, consider body size. It has been well documented in 
fishes that survival and fecundity depend more on body 
size (i.e., mass) than on age (e.g., Werner and Gilliam, 
1984; Sargent et al., 1987). Large fish have higher rates of 
fecundity, mating success, and survival than small fish 
(Werner and Gilliam, 1984; Gross and Sargent, 1985; 
Andersson, 1994). Thus, body size is clearly an important 
component of overall condition in fishes.

Second, consider immunocompetence (Hamilton and Zuk, 
1982; Folstad and Karter, 1992). In many fishes, females 
avoid parasitized males (see Andersson [1994] for review). 

In guppies and sticklebacks, certain parasites result in a 
reduction of male orange or red, carotenoid-based 
breeding coloration (Houde and Torio, 1994; Milinski and 
Bakker, 1990; but see Folstad et al., 1994), and in Arctic 
charr, male red breeding coloration is positively correlated 
lymphocyte density in the blood (Skarstein and Folstad, 
1996). How one measures immunocompetence may be 
problematic, but future research on immunocompetence, 
sexual selection, and the potential role of carotenoids 
should be very rewarding. We suggest that empiricists 
explore how body size, energy reserves, and 
immunocompetence interact to determine lifetime 
reproductive success, and that theoreticians explore the 
implications of these interactions for multi-modality honest 
signaling.

2. Search for condition indicating traits

We suggest that empiricists determine whether or not any 
of the traits that they study (e.g., morphology, signal 
production, signal detection) are correlated with condition 
(e.g., weight scaled to length). Condition can be estimated 
as Weight/[Length.sup.b] where b represents the 
allometric coefficient between weight and length, which 
can be estimated by non-linear regression of W versus L, 
or by log-log regression (Bolger and Connolly, 1989). 
Alternatively, condition can be estimated as the residuals 
about a W versus L regression line, or one can compute 
partial correlations between potential condition indicators 
and weight, while holding the effects of length constant. 
Preliminary studies in our laboratories suggest that 
components of fin morphology and of breeding coloration 
may be correlated with condition, in some cases in both 
sexes of fishes. We are pursuing this further.

3. Honest signaling in both sexes

In most genetical models of sexual selection (e.g., Lande, 
1980, 1981; Kirkpatrick, 1982), the limiting sex exhibits the 
mating preference and the limited sex exhibits the 
ornament. For this reason, most empirical studies have 
focused on sexual selection in the limited sex, typically 
males (see Andersson [1994] for review). However, in 
recent game theoretical models, Crowley et al. (1991) and 
Johnstone et al. (1996) found that under certain conditions 
it pays both sexes (i.e., the limiting and limited sexes) to 
be choosy. Even though females are the limiting sex in 
sticklebacks (e.g., Sargent and Gebler, 1980), male 
sticklebacks do exhibit mate choice based on female body 
size and fecundity (Rowland, 1982, 1989; Sargent et al., 
1986), and females adopt a breeding coloration that 
signals when they are receptive to males (Rowland et al., 
1991). Furthermore, in several species of the biparental 
cichlid genus, Cichlasoma, females are the more colorful 
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sex (Turner, 1993). Finally, most sex pheromone signals 
seem to be produced by females. We suggest that 
theoreticians develop genetical models of intersexual 
selection for both sexes simultaneously, and explore the 
co evolution of honest signaling in both sexes. We suggest 
also that empiricists look for condition dependence and 
honest signaling in both the limited and limiting sexes.

4. Sensory or pre-existing bias versus condition indicators,

Throughout our discussion we have emphasized a 
coevolution between female preference and male 
ornament. There is evidence in swordtails (Xiphophorus) 
that the "sword" (i.e., a ventral extension of the caudal fin 
that develops as males reach maturity) may have evolved 
through a sensory or pre-existing bias in female 
preference (Ryan and Wagner, 1987; Basolo, 1990a, b, 
1995a, b). Female Xiphophorus prefer males with swords, 
whether or not the males of their species have swords; in 
addition, female Priapella olmecae (the outgroup genus to 
Xiphophorus) also prefer males with swords (Ryan and 
Wagner, 1987; Basolo, 1990a, b, 1995a, b), even though 
swords are not known in this genus. Whether or not 
phylogenetic comparative data within the genus, 
Xiphophorus, supports the pre-existing bias hypothesis is 
controversial (Meyer et al., 1994; Basolo, 1995a; Wiens 
and Morris, 1996); however, Basolo’s (1995b) recent 
demonstration of female preference for males with swords 
in the "sword-less" outgroup genus, Priapella, does favor 
this hypothesis. What about condition dependence in 
swordtails?

Basolo (1998) found that male green swordtails 
(Xiphophorus helleri) on restricted diets produced swords 
as large as males that were fed ad libidum, despite the fact 
that males on the restricted diet had reduced growth in 
body size. These data suggest that swords may not be 
honest indicators of male quality. To our knowledge, sword 
length has not been compared to condition index or energy 
reserves within a species. It appears that morphological 
traits such as fin size reflect the conditions that prevailed 
when their development was initiated. As such, they may 
be relatively fixed and less reliable as "instantaneous" 
condition indicators than an ephemeral color pattern (see 
Kodric-Brown, 1998), which can reflect more short-term 
fluctuations in condition. This is certainly worth further 
investigation. Also, it would be interesting to see if the 
strength of female preference is correlated with mean male 
sword length among species of Xiphophorus, which may 
indicate a coevolution between female preference and 
male ornament in addition to the pre-existing bias.

5. Empirical studies that explore more than one sensory 
modality

Fish ethologists who study visual cues have traditionally 
separated their stimulus and focal fish with transparent 
glass or plastic partitions (e.g., Sargent and Gebler, 1980). 
Users of transparent partitions are cautioned that not only 
do these partitions block chemical cues and the particle 
movement that is generated by low frequency 
mechanosensory cues (e.g., during a lateral display), but 
most of them are also effective filters of ultraviolet light, 
and many fishes are known be able to see ultraviolet light 
(Jacobs, 1992; Archer, 1988; Rush, 1995). In fact, we 
have preliminary data for a poeciliid that males have UV 
breeding coloration, and that females prefer males behind 
UV transparent over UV filtering partitions (Rush et al., 
unpublished).

We suggest that empiricists who study communication 
between the sexes explore two or more sensory modalities 
in combination. For sensory ecologists, this may require 
collaboration among research laboratories; however, 
behavioral ecologists might approach the problem with 
simple factorial experimental designs. If factorial -design 
experiments of mate choice indicate that sensory cues 
from two sensory modalities produce a greater response in 
the receiver than either cue alone (either additively or 
multiplicatively), then it becomes interesting to investigate 
how these modalities interact at both ethological and 
physiological levels. Alternatively, sensory biologists who 
have already determined that two sensory modalities 
interact on a physiological level can set the stage for 
behavioral ecological experiments.
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