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Whence tit-for-tat?
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Summary

In theoretical and empirical studies of the evolution of cooperation, the tit-for-tat strategy (i.e. cooperate
unless your partner did not cooperate in the previous interaction) is widely considered to be of central
importance. Nevertheless, surprisingly little is known about the conditions in which tit-for-tat appears and
disappears across generations in a population of interacting individuals. Here, we apply a newly developed
classifier-system model (EvA) in addressing this issue when the key features of interactions are caricatured
using the iterated prisoner’s dilemma game. Our simple representation of behavioural strategies as algorithms
composed of two interacting rules allowed us to determine conditions in which tit-for-tat can replace non-
cooperative strategies and vice versa. Using direct game-theoretic analysis and simulations with the EvA
model, we determined that no strategy is evolutionarily stable, but larger population sizes and longer
sequences of interactions between individuals can yield transient dominance by tit-for-tat. Genetic drift
among behaviourally equivalent strategies is the key mechanism underlying this dominance. Our analysis
suggests that tit-for-tat could be important in nature for cognitively simple organisms of limited memory
capacity, in strongly kin-selected or group-selected populations, when interaction sequences between
individuals are relatively short, in moderate-sized populations of widely interacting individuals and when
defectors appear in the population with moderate frequency.

Keywords: classifier system; evolution of cooperation; game theory; genetic algorithm; iterated prisoner’s
dilemma; reciprocal altruism

Introduction
Who shall dwell in thy holy hill?
He that ... worketh righteousness,

and speaketh the truth ...

In whose eyes a vile person is condemned;

He that sweareth to his own hurt, and changeth not . . .
nor taketh reward against the innocent.

Psalms 15:1-5

There is much current interest in understanding how cooperation can evolve in populations of
f)rganisms under the influence of natural selection. Three main mechanisms involving direct
Interactions among individuals have been proposed: group selection (Wilson, 1980; Mesterton-
Gibbons and Dugatkin, 1992), kin selection (Hamilton, 1964; West Eberhard, 1975) and reciprocal
altruism (Axelrod and Hamilton, 1981; Axelrod, 1984; Trivers 1985). [By-product mutualism, an
indirect interaction among individuals mediated by their environment, has also been proposed as a
mechanism for evolving cooperation (Brown, 1987; Mesterton-Gibbons and Dugatkin, 1992), but
we will not consider it further here.] Group selection may be important within certain
metapopulations, especially those with sufficiently isolated subpopulations more likely to persist
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and export colonists when they achieve high absolute fitnesses; however, such a metapopulation
structure may be uncommon (e.g. see Harrison, 1991) and individual selection may often
overwhelm the effects of group selection in nature (Williams, 1966). In many. perhaps most,
cooperative populations, kin selection — in which relatives gain fitness both from their own success
and that of their kin — may be important, at least initially (Axelrod and Hamilton, 1981). However,
there are many other well-documented examples that seem to fit neither group nor kin selection;
these may hinge primarily on behavioural reciprocation of actions beneficial to the recipient over
a sequence of interactions between individuals (Axelrod and Hamilton, 1981; Axelrod, 1984;
Axelrod and Dion, 1988; Crowley er al., 1995). The intriguing possibility that cooperation may
readily evolve in the absence of the other mechanisms motivates us to focus here on reciprocal
altruism.

A particularly useful tool for investigating the evolution of cooperation by reciprocal altruism is
the iterated prisoner’s dilemma (IPD) game (Fig. 1; Axelrod and Hamilton, 1981). In the present
context, we focus our analysis of reciprocal altruism on the frequency of mutual cooperation
between the two IPD players. This can be interpreted as simultaneous reciprocal altruism, in
contrast to Trivers’ (1971) initial concept, in which the two players alternate cooperation and
defection out of phase with each other.

The two competitions conducted by Robert Axelrod (University of Michigan) to identify the
most successful competitive yet cooperative strategies in playing the IPD produced the same
winner both times: tit-for-tat (TFT) (see Axelrod, 1984; Axelrod and Dion, 1988). TFT cooperates
in the first interaction of an IPD sequence and then in subsequent interactions simply does what its
partner did last. The personality of TFT has been characterized (Axelrod and Dion, 1988) as nice

Focal's Response

C = Cooperate D = Defect
c 3 5
Other's R = Reward T = Temptation
Response
D 0 1
S = Sucker P = Punishment

Figure 1. Fitness pay-offs to the focal individual for each of the four possible response combinations in the
prisoner’s dilemma game. (Pay-offs to the other individual are the same as for the focal, except that when the
focal receives T, the other receives S and vice versa.) The game is defined by inequalities among the pay-offs,
namglx T >R >P>8S and 2R > S+T. Regardless of the other’s response, the focal’s best (fitness
max¥mlzmg) move is to defect. A sequence of such games is known as the iterated prisoner’s dilemma (IPD)
and in general there is no best strategy in the IPD (Boyd and Lorberbaum, 1987; Mesterton-Gibbons, 1992).
Tw.o selfish individuals can establish a rewarding relationship only by each taking the risk of being suckered,
which neatly caricatures the problem faced by many organisms that somehow manage to cooperate in nature.

Memory of previous responses opens the possibility of reciprocity and this can sometimes steer an interaction
towards cooperation.
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(never defects first), provokable (defects after defections by the partner), forgiving (cooperates after
the partner cooperates, regardless of what went before) and clear (straightforward and consistent)
[cf. the above passage from the Book of Psalms].

TFT (and some close relatives) has become the prototypical cooperative strategy in both
empirical studies (Milinski, 1987, 1990; Dugatkin, 1991; Dugatkin and Alfieri, 1991; and others
reviewed in Axelrod and Dion (1988) and Crowley et al. (1995)) and theory (e.g. Axelrod, 1987,
Boyd and Lorberbaum, 1987; Mesterton-Gibbons and Dugatkin, 1992; Nowak and Sigmund, 1992)
of reciprocal altruism. Despite its laurels in the tournaments and other documented evolutionary
successes of its close relatives (Axelrod, 1987; Nowak and Sigmund, 1992), however, TFT is
unable to do better than its partner over a sequence of interactions or to avoid the consequences of
its obligation to retaliate, which may sometimes result in its replacement by more sophisticated
strategies in evolutionary simulations based on the IPD (Lindgren, 1991; Nowak and Sigmund,
1992, 1993; Crowley, 1995; Crowley er al., 1995). Nevertheless, TFT may at least have an
important role as an intermediate step (Lindgren, 1991) or a ‘catalyst’ (Nowak and Sigmund, 1992)
in the evolution of cooperation. Thus, understanding how TFT may evolve and the conditions under
which it can persist for extended periods may prove quite valuable in approaching the more general
question of how cooperation is initiated and maintained from an initially asocial state (Elster,
1979).

Axelrod and Hamilton (1981) argued that TFT may arise either through kinship or through
clustering, in which TFT players are, for whatever reason, more likely to interact with each other
than with other strategies. However, neither of these mechanisms is required for TFT to evolve
under conditions in which the IPD is played by simple, evolving algorithms using memory limited
to the previous play of the game (Crowley, 1995). This previous paper described a classifier-system
model of the evolution of cooperation (EvA) capable of tracking these algorithms ( = strategies)
across simulated evolutionary time. In the present study, we use this model to trace the
evolutionary dynamics of TFT and develop an understanding of some of the forces that determine
how cooperative strategies may arise and disappear.

In the remainder of this paper, we describe the EvA model and then use it to express a simple
class of strategies that includes TFT in algorithmic form. An analysis of all possible algorithms in
this class and their mutational transitions then suggests the importance to the evolution of
cooperation of the population size and of the number of interactions per generation between each
two individuals. We therefore run the model on a computer to determine the effects of population
size and interactions per pair per generation on fitness and on the percent of all interactions
resulting in mutual cooperation, and we examine a representative sequence of generations over
which TFT appears and disappears. From these results, we summarize the evolutionary dynamics
of TFT and some other simple strategies, make some testable predictions and identify some
important directions for future research.

The EvA model

Classifier systems (Holland, 1975, 1992; Goldberg, 1989), closely related to genetic algorithms
(Axelrod, 1987; Sumida et al., 1990; Davis, 1991; Crowley et al., 1995), evolve algorithms that
generate an action in response to a condition; in the present context, the action would be
cooperation (C) or defection (D) in a round of the IPD and the condition would be the responses
by the focal individual (i.e. the algorithm in question) and its opponent in the immediately
Preceding round. These evolving algorithms, which can be interpreted as strategies, are sets of
interacting rules, each occupying a locus on the genome of the individual (= algorithm). A
summary of the grammar of EvA, as it pertains to the present analysis, is presented in Fig. 2. The
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basic premisses of EvA are that behaviours can be considered to consist of logical, interacting
components, that behaviours develop from related behaviours and that the most successful
behaviours tend to become more common. Success or fitness is measured by the accumulation of
pay-offs from playing the IPD against all other individuals in the population.

Transitions between algorithms differing by a single-point mutation

To investigate the dynamics of TFT, we simplify the problem by considering only the 35 possible
two-rule algorithms (Table 1). This assemblage includes TFT and an array of other relatively
simple strategies (see Fig. 2) that underpin the more sophisticated behaviour of much more

Table 1. Single-mutation transitions among the 35 possible two-rule algorithms and the potential for
successful invasion®

First rule
/:C /:D
Second Algorithm Algorithm  Single-mutation
rule number® Single-mutation transitions number® transitions
A4
/:C 1 2 35 79 - -
A A A A Vv v oA /NN V'S
/:D 2 1 4 6 8 10 19 20 22 24 26 2 21232527
v v A A
C/:C 3 1 4 5 111320 2 3 21 2228 30
v A A VW v V'S
C/:D 4 2 3 6 12 14 21 4 19 20 23 29 31
v Vv A v
D/:C 5 1 3 6 1517 22 22 2 5 202332 34
v v v V'S A
D/:D 6 2 4 5 16 18 23 6 19 21 22 33 35
A 4 Vas 4
/C:C 7 1 8 9 11 15 24 [24) 3 ¥ 25 26 28 32
v AV V'S v o
/C:D 8 2 7 10 12 16 25 8 19 24 27 29 33
v
/D:C 9 17 10 13 17 26 26 3 9 %2730 34
—_ -~ —_ —_
/D:D 2 8 9141875 {0 19 25 26 31 35
v v
cce 1 37 1213 15 28 {1 20 24 29 30 32
A A P V'S v
C/CD 12 4 8 11 14 16 29 2 21 25 28 31 33
v
cDC 13 39 11 14 17 30 {3 20 26 28 31 %
PN F'S A\ 4 'S
C/D:D 14 4 10 12 13 18 31 14 21 27 29 30 35
A4
D/C:C  [15) 5 7 1116 17 32 (32] {5 22 24 28 33 34
v v v V'S
D/C:D 16 6 8 12 15 18 33 16 23 25 29 32 35
DD:C 17 5 9 1315 18 34 34 {7 22 26 30 32 35
A 4
DDD 18 6 10 14 16 17 35 {8 23 27 31 33 34
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complex strategies (Crowley, 1995). Moreover, the basic patterns and mechanisms that emerge
here generally characterize those associated with algorithms based on larger rule sets and rules
invoking more memory (Crowley, 1995).

The mutations considered here are single-point modifications: changes between C and D and
insertions and deletions of a randomly chosen C or D within rules. These mutations are generated
with sufficient frequency to prevent any of the algorithms or groups of algorithms from being
evolutionarily stable (see Boyd and Lorberbaum, 1987), but not so frequently that dominance of
one or more algorithms cannot be maintained over tens or hundreds of generations by selection. By
considering the fate of a population composed entirely of each individual algorithm invaded by one
of its single-point mutants, we can begin to understand the quasi-stability punctuated by
evolutionary transitions between algorithms (Appendix 1 and Table 1). The analysis in Appendix
1 shows that TFT is the only cooperative algorithm that cannot be invaded by any of its single-
point mutants. In contrast, none of the 12 always defect (ALL D) algorithms can be invaded by a
single-point mutant. Under assumptions of no more than one point mutation per population per
generation and no genetic drift, then both TFT and ALL D would be ESSs. So how do TFT and
ALL D ever successfully invade each other?

Dynamics of invasion and replacement

with the exception of extremely high mutation rates, which are not considered here, successful
invasion and elimination of TFT by ALL D and vice versa requires a combination of mutation and
drift (Appendix 2). A TFT population becomes invasible by an ALL D mutant once approximately
half of the TFT algorithms have drifted to always cooperate (ALL C) (see Table 2); with fewer
ALL C present than this critical proportion, a mutant ALL D will actually ‘inoculate’ the
population against such invasion by selecting for TFT over the exploitable ALL C. When most of
the cooperators are TFT, the advantage that ALL D gets from exploiting the few ALL C is
outweighed by reciprocation among TFT; this results in the elimination of both ALL D and the
exploited ALL C, re-establishing TFT fixation. Thus, rapid replacement of TFT by ALL D would
require a reasonably high mutation rate, so that the process is not simply retarded by the rarity of
mutations, but drift must then be especially rapid to permit accumulation of sufficient ALL C
between appearances of mutant ALL D.

* Single-mutation transitions are the algorithms into which the given algorithm can mutate by point mutation within a rule.
Symbols above these mutant algorithms indicate their expected fate in subsequent generations. Consider algorithms A and
B. A means that a mutant algorithm A will invade and replace algorithm B and that a mutant algorithm B is unable to
invade A and will disappear. A implies that a mutant A cannot invade B and will disappear, whereas a mutant B will
invade and replace A. A indicates that a mutant A cannot invade B, but neither can a mutant B invade A. A implies that
a mutant A can invade B and will dominate a stable mixture of A and B; moreover, a mutant B can invade A but will be
dommatgd by A in the stable mixture. Finally, A means that a mutant A can invade B and will be dominated by B in a
stabl_e mixture of A and B and a mutant B can invade A and will dominate A in the stable mixture. The algorithm identifier
A with none of these additional symbols on top means that mutant A has neither advantage nor disadvantage relative to
glg;)nthm B and the same for mutant B relative to A: changes in their frequencies will result solely from genetic
rift.

® The boxes around some of the algorithm numbers imply non-invasibility of that algorithm by any of its single-mutation
transition algorithms. Note that 12 of the 18 /:D algorithms are non-invasible, whereas only one /:C algorithm is non-
invasible, namely TFT. Three others (indicated by square parentheses) can be invaded but not completely eliminated by
algorithms derived from single-point mutations. Also note that all of the functionally identical ALL D algorithms (i.e. both
mles ‘result in defection: 19, 21, 23, 25, 27, 29, 31, 33 and 35) are non-invasible; in contrast, all ALL C algorithms are
invasible and most (i.e. 1,3,5,7,9, 11, 13 and 17) are eliminated by the invader, except for algorithm 15, which persists
as a minority component of a mixture with its only successful invader, algorithm 32 (see Appendix 1).
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Invasion of ALL D by TFT requires specific precursors [i.e. suspicious TFT (STFT) and la{ent
retaliator; see Table 2]. Latent retaliator is an ALL D algorithm that can accumulate by mutation
and drift, and an individual of this type must mutate to yield the TFT inyac}er. STFT can also
invade an ALL D population by mutation and drift; TFT will proceed to ehnynate ALL D in the
presence of even a single STFT for most situations of interest here. Exceptions arise when the
interaction sequences are quite short and populations are relatively large; however, for a sequence
length of 11, the frequency of STFT required for successful invasion of ALL D by TFT is less than
1/15.

/We summarize our understanding of transitions between TFT and ALL D, based on the ?nal){ses
of Appendices 1 and 2, in Fig. 3. This interpretation led us to expect that a.la.rge population size,
which reduces the rate of genetic drift (Wright, 1921) and long interaction sequences, wmch
facilitate reciprocation (Axelrod and Hamilton, 1981), would jointly shift the balance of behaviour

RULE SYNTAX XY:Z Translation: 1f the focal individual did X and the other did Y
in the last round, then the focal does Z in this round.

Example Rule Translation

/-C No matter what either partner did last, the focal cooperates
/C:D If the other cooperated in the last round, the focal defects
D/C.C If the focal defected and the other cooperated last, the focal cooperates

RULE SEMANTICS: How rules interact to determine the response in a two-rule algorithm.

(1) When a more specific rule fits, it overrides a more general rule.

(2) When equally specific rules both fit, they are equally likely to be invoked (i.e.
EQUIVOCATOR, the combination of /:C and /:D, yields C or D, each with probability 0.5).

(3) There is always at least one maximally general rule per algorithm (i.e. /:C or /:D).

EXAMPLE INTERACTION SEQUENCE FOR ALGORITHMS A ={ ICgB= { /D

(Payoffs indicated in square brackets come from Figure 1) C/D:D /D:C
ROUND: 1 2 3 4 5 6

ALGORITHM A: C[0] D[] c€pB] c[] D[] C (3]

ALGORITHM B: D[s] D[1] C€@B) D[5] D[] C 3] ...

Note that the sequence of responses in the first 3 rounds simply repeats indefinitely, and B

achieves the higher total payoff (fitness).

SOME IMPORTANT TWO-RULE ALGORITHMS

/:.C I'D /:.D /.C /:D I:C *=C,D,or
*/*C */*D /D:D /D:D IC:C /D neither
ALL C ALLD LATENT TFT STFT EQUIVOCATOR
RETALIATOR

Figure 2. Brief overview of the grammar of EvA for two-rule algorithms. TFT, tit-for-tat; STFT, suspicious
tit-for-tat.
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Table 2. Minimal numbers of STFT (s*) and ALL C (c*) needed for TFT to invade ALL D and for
ALL D 1o invade TFT, respectively, for the combinations of population size and sequence length
used in the EvA runs reported in the text

Population sizé (n+1)

10 20 40
Sequence length (m) 11 31 101 11 31 101 11 31 101
s* for TFT to invade ALL D 1 1 1 2 1 1 3 1 1
c* for ALL D to invade TFI 4 4 4 8 9 9 17 19 19
* See Appendix 2.
- SELECTION
ot MU TATION
= ORIFT
ONE OR MORE AND THEN ONE OR MORE
1,0 1:0 LATENT
Jcic SUSPICIOUS TFT /DD RETALIATORS
APPEAR(S) BY MUTATION APPEARS BY MUTATION
FROM ALL D IF NOT ALREADY PRESENT
ALL D MU TATION OF
1:0 D o 1iC .
«/01D /0:0 10:0
FIXED TET
LATENT RETALIATOR(S) AND THEN ONE OR MORE
APPEAR(S) BY MUTATION SUSPICIOUS TFT(S)
IF NOT ALREADY PRESENT APPEAR(S) BY MUTATION
FROM ALL D
ALL D APPEARS EXTENSIVE LOSS T1T-FOR~TAT
OF RETALIATION
B8Y MUTATION FIXED
BY DRIFT

Figure 3. How selection, mutation and drift generate the evolutionary dynamics of TFT. Before TFT can
}nvade ALL D, defectors that can cooperate in response to cooperation (here, only STFT) and other
individuals bearing a latent retaliation rule must appear, though these events can occur in either order.
Eventuglly, a latent retaliator mutates into TFT, which will quickly spread throughout the population if the
Interaction sequences are long enough. ALL C can then gradually begin to accumulate in the population
thrgugh genetic drift. Ultimately, enough ALL C individuals will be present that a mutant ALL D will be able
to invade and spread. See Appendix 2.



2:/ aan 2D/ aa/
:VA (T (S (1
D/ a:/ a:/ o/ ey  $9¢C 124
ao/ ao/d aa/ ao/ aan aa/ 20/
( q (¢ (¢ (¢ (€ ("
o/ a/ o/ a/ a/ a/ a/ 8T a0 24!
aa/ 20/ aan aa/ an/
:# (T (% €] (L
o/ a;/ a/ a:/ a/ 00 L10°1 wi
aa/a aa/ 0:0/ a/ aan
:VA (T ANVA (L (8
a/ a/ a/ a/ a/ 00 000'1 1
20/ aa/ an/ aan
(a ﬁﬁ @ﬁ (8
a/ a/ a/ a/ 00 000'1 ol
a/ a:n/ aan aa/
:VA (1 (¢ (S1
a/ a/ a:/ a/ 00 000'1 o€l
(sited opn1 -9°1) swyiLod|y uoneradoos  ssaujy Toquinu
feninwt 9, UBIN :OCE@:@O

¢I9poW YAH 9y) Jo uni e ul 1el-10j-11 Jo ddueredddesip pue soueseadde ayy ‘g 9[qe]



‘100 = sanpiqeqoxd uonenu t[Z°0 = ANjiqeqoid 19a0sso1d tiied sod suonoesUl [Q] I = Wi Kowsw ¢,0g = 9zis uonendod ,

20/
(I
oY

a/d 2D/
(1 (
ay/ a/
2D/ a;/
(I (T
a/ a/
ao/
(1
a/

a/
of
oY)

ao/
i

a:/

2:0f
:VA

a:/

a/
i

o/

a:/
(€

a/

a/
(4

a/

a/
of

oy

a:/
of

o4

0:0/
(€

o/

a-o/
of

oY}

ao/
(81
a/

ao/
(1
a/

ao/
©
oy

ao/
(S1
oY)

A

A

A
o

e

A

A

(61
Xl

0/
(114
ol

ad/
(0T
o]

00

00

9yl

L9¢

8'9¢

1°06

0001

0001

000°I

680'C

9CI'C

[4:]

1§6°C

000t

000t

8¢

18¢C

08¢

6LT

8LC

SLe

vit

Lyl



508 Crowley and Sargent

in the IPD from defection towards cooperation. We tested this view in a series of EVA runs with
different combinations of population size and interaction-sequence length.

Effects of population size and interaction-sequence length in the EvA model

The EVA results show a clear interaction between population size and interaction-sequence length
(Fig. 4). For small populations or short sequences or both, only approximately 10% of interactions
yield mutual cooperation. However, for the largest populations and longest sequences considered,
the paired individuals both cooperated in more than half of all interactions. Direct examination of
the underlying evolutionary sequences (Table 3) documents the replacement of ALL D by TFT and
vice versa in ways completely consistent with the analysis of Appendix 2 and the interpretation in
Fig. 3.

Discussion

To understand better the tit-for-tat strategy and its implications for the emergence of cooperation in
interacting populations of selfish individuals, we have applied a newly developed evolutionary
approach based on pairwise sequences of playing the prisoner’s dilemma game. We have shown
that TFT and a variety of other simple strategies can be represented in a format that facilitates
observing and understanding their dynamics. We assumed that strategies (algorithms) are
composed of two interacting components (rules), each of which can change incrementally. Analysis
of these incremental changes (single-point mutations) indicated that TFT and ALL D are the only
evolutionarily stable strategies in the absence of multiple simultaneous mutations and of genetic
drift (cf. Axelrod and Hamilton, 1981).

We then showed that drift and the accumulation of mutations under drift render TFT and ALL
D each invasible by the other, though the dynamics of invasion and replacement are quite different
in the two cases. This interpretation yielded the prediction that larger population size and longer
interaction sequences would shift the balance of behaviour in the population from defection to
cooperation and this was borne out in runs of a model explicitly depicting the evolutionary
dynamics. Moreover, replacement sequences generated by the model were consistent with our
analysis of the underlying mechanisms.

These results have been obtained from a particularly simple and restricted array of behavioural
strategies for playing the iterated prisoner’s dilemma game. When behavioural strategies can be
based on memory of more previous interactions (longer rules) or on more complex behavioural
algorithms (more rules), TFT can and does still evolve. Moreover, many of the other strategies
capable of generating cooperation are clearly based on TFT, since they contain the two TFT rules,
along with some others directing responses to specific situations that can fine-tune behaviour in
yarious ways. Such strategies may evolve from TFT and are often particularly TFT-like early in
interaction sequences, when the interaction history on which the subtler responses are based does
not yet exist (see Crowley, 1995).

The 35 algorithms considered here represent only 13 distinct IPD strategies, since the 12 ALL
C and the 12 ALL D algorithms are functionally indistinguishable (within each set of 12) in playing
the IPD. It is important to realize, however, that there are no evolutionarily stable strategies even
among this restricted set, except with fewer than three interactions per sequence. We note that this
evolutionary transience clearly does not hinge on noise in interpreting or responding to another
individual’s behaviour (see Lindgren, 1991) but does depend on genetic drift, in which strategically
equivalent strategies can vary randomly in frequency across generations. Of course, evolutionary
transience does not preclude the long-term dominance of one or a few strategies, as implied by our
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70 T
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Figure 4. Mean percent mutual cooperation +1 st (a) and mean fitness per round of the IPD game +1 s (b)
versus population size and number of rounds per IPD game. Note that percent mutual cooperation and fitness
are tightly correlated, in that the two patterns are very similar. These data were obtained from the EvA model
(P.H. Crowley, submitted) with two rules per algorithm, memory limit = 1 (100 replicates per mean), the
results averaged over the final 500 of the 1000 generations, and mutation rate = 0.01 and crossover rate =
0.21 per locus per generation. The runs were initialized with random rules, approximately 44% of which were
zero-order, 44% first-order and 11% second-order.
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results with the EvA simulations. Moreover, selective forces may ultimately eliminate the
transience of cooperative strategies. For example, once transient cooperation appears, some
combination of individual, kin and group selection may adjust the amount of memory (Healy,
1992) or type of memory (Crowley et al., 1995) used, the cognitive structure (Churchland and
Sejnowski, 1992), deme structure (Wilson, 1979, 1980), IPD pay-offs (Axelrod and Hamilton,
1981) and other features to shift the balance sufficiently for cooperation to become stable. This
possibility and these potential mechanisms deserve further attention.

Our analysis suggests some situations in which TFT might be important in nature, relative to
more complex cooperative strategies.

(1) For cognitively simple organisms of limited memory capacity, the situation explicitly
depicted here.

(2) In strongly kin- or group-selected populations. Though low memory capacity can actually
yield higher fitness (Crowley, 1995; see also Healy, 1992), individuals with more memory and thus
capable of more sophisticated strategies may eliminate low-memory individuals — except under
strong kin or group selection (Crowley, 1995).

(3) When interaction sequences are relatively short — short enough that complex strategies are no
more likely to be successful, but long enough that reciprocation can be important. The assumption
in some recent studies that interaction sequences are infinitely long (e.g. Lindgren, 1991; Nowak
and Sigmund, 1992, 1993) may severely limit the applicability of those analyses to many situations
in nature.

(4) In moderate-sized populations of widely interacting individuals — or perhaps large
populations composed of moderate-sized trait groups. Our analysis shows cooperative behaviour
may be rapidly eroded by drift in small populations. However, in large populations, interacting with
very many other individuals may mean that interaction sequences with each partner must be short,
which (as we have seen) makes cooperation less likely to evolve. The role of tightly interacting
subpopulations (trait groups) for evolving cooperation in large populations is currently being
investigated (B. Spohn and P.H. Crowley, in preparation).

(5) When defectors appear in the population with moderate frequency. In this case, each defector
reinoculates the population against defection without overwhelming the effects of selection
favouring TFT. Under these conditions TFT’s relative lack of generosity to defectors is an
important asset (cf. Nowak and Sigmund, 1992).

Because the above situations should generally be common, we fully expect tit-for-tat and closely
related strategies to be well represented in nature.
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Appendix 1: determining the fate of single-point mutants of tit-for-tat and other
algorithms

Table 1 summarizes the expected fate of all single-point mutants of the 35 two-rule algorithms.
Here, we show how these conclusions were drawn, focusing mainly on the non-drift transitions of
tit-for-tat (TFT) and suspicious tit-for-tat (STFT). For each algorithm of interest, we show enough
of the relevant interaction sequences from the beginning to identify the repeat pattern, a short
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sequence of responses by the two algorithms that is repeated throughout the remainder of
theinteraction. (In the cases below, the repeat patterns are enclosed in rectangles.) The mean pay-
off per interaction for each algorithm in each iteration of the repeat pattern, determined using the
values in the matrix of Fig. 1, then expresses the overall fitnesses of the algorithms. However, other
subtle yet important fitness differences between algorithms can arise in two ways: (1) interactions
preceding the first iteration of the repeat pattern for which the algorithms differ in pay-off (see case
1 below) and (2) ending the full sequence with a truncated repeat pattern (see case 2 below). In
these situations, the mean pay-off per interaction may be altered by a small amount that depends
on the total length of the interaction sequence. We indicate these effects as plusses and minuses
beside the mean pay-off per interaction.

For algorithms A and B, the three relevant interaction sequences are A versus B, A versus A and
B versus B. For each sequence, we find the repeat pattern, determine the expected pay-off for each
algorithm and indicate plus or minus as appropriate. We conclude (1) that A can invade B if A does
better against B than B does against itself, (2) that A and B drift if the algorithms do equally well
in all interactions or (3) that A cannot invade B if A does worse against B than B does against
itself. When each can invade the other, the result is a stable mixture; for sufficiently long
interaction sequences, the proportions of the two algorithms in the mixture are determined by
expressing the fitnesses of the two algorithms as functions of the proportions, equating the fitnesses
and solving for the proportions.

Case 1: TFT versus probabilistic algorithm 2 in Table 1

2 =) /[C 10 = } /.C
/:D /D:D

1 2 3 « interaction sequence

2 (C,.D) (C.D) (C,D) ...2.25+ where (C,D) implies C and D are equally probable
10 C (C,D) (CD) ...225-

1 2

2 (C,D) CD) ... 225
2 (C,D) (C.D)
1
10 C C 3.0
10 C C
2510 =225+ \ = 2 cannor invade 10 1052 = 225-\ = 10 cannot invade 2
100510 = 3.0 252 =225

Case 2: TFT versus algorithm 8, which defects following cooperation by its partner

8§ =J/C 10 = ) /:C
/C:D /D:D
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1 2 3 4 5
8 C D D C C 225+
10 C C D D C 225 -
1 2 3
8 C D C e L 20+ 10
8 C D C 10
8 —>10 =225+ \ = 8 cannor invade 10 10—-8
10—>10 = 3.0 8 —38

1
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C
C

2

C ..L30

Cc ..
= 225—\ = 10 can invade 8
=20+

Case 3: TFT versus ALL D alogrithm 27, a key player in the evolution of TFT

10 = } /.C 27 = ) ['D

/D:D /D:D

1 2 3

10 C D D 1.0 -
27 D D D 1.0+

1 2 1
27 D D 1.0 10 C
27 D D 10 C
10 527 = 1.0—- V= 10 cannot invade 27 27 = 10 =
27527 =1.0 10> 10

oo

1.0 +
3.0

}3.0

= 27 cannot invade 10
(for sequences longer than 2)

}

Note that against TFT, the other three single-point mutants of TFT (algorithms 9, 14 and 18)
always cooperate, as does TFT, resulting in equal pay-offs and genetic drift between TFT and any

of the three.

Case 4: STFT versus probabilistic algorithm 2

1

D
D

2 =) /C 24 = ) /:D

/:D /C:C

1 2 3
2 (C,D) (C,D) (C,D) 2.25 —
24 D (C,D) (C,D) 2.25 +

1 2

2 (C,)D) (CDh) ... = 2725 24
2 (C.D) (C,.D) . 24
29524 =1225—- \= 2 can invade 24
24 524 =10

2>

24— 2 =225+
2 =225

2

D
D

}1.0

}=> 24 can invade 2
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Since algorithm 2’s fitness advantage in invading algorithm 24 exceeds algorithm 24’s fitness
advantage in invading algorithm 2, the result is a stable mixture, with more algorithm 2 than
algorithm 24. The expected proportion of algorithm 24 decreases with the length of the interaction
sequence and asymptotically approaches O.

Case 5: STFT versus ALL C algorithm 7

7=J/C 24 = } /'D
/C:C /C:C

1 2 3
7 C C C e 30—
24 D C C e 3.0+

1 2 1 2

7 C C .. | 3.0 24 D D . 1.0
7 C C 24 D D
7524 = 30— \= 7 can invade 24 24> 7 = 3.0+ \= 24 can invade 7
24 524 =10 7— 7 =30

Since algorithm 7’s fitness advantage in invading algorithm 24 exceeds algorithm 24’s fitness
advantage in invading algorithm 7, the result is a stable mixture, with more algorithm 7 than
algorithm 24. The proportion of algorithm 24 decreases as interaction sequences lengthen and
asymptotically approaches O.

Case 6: STFT versus algorithm 26, which cooperates only after defection by its partner

24 = ) /D 26 = ) /D
JC:C /D:C
1 2 3 4 S
24 D D C C D e 225+
26 D C C D D e 225 -
1 2 1 2 3
24 D| D ... 1.0 26 D C D .| 20—
24 D| D 26 D C D ..
24 526 = 225+ \ =24 can invade 26 26 524 = 225 — \= 26 can invade 24
26526 =20-— 24 524 =1.0

Since algorithm 26’s fitness advantage in invading algorithm 24 exceeds algorithm 24’s fitness
advantage in invading algorithm 26, the result is a stable mixture, with more algorithm 26 than
algorithm 24. Let p be the proportion of algorithm 24 in the mixture of algorithms 24 and 26. Then
the fitness of algorithm 24 is F,, = p + 2.25(1 — p) and the fitness of algorithm 26 is F,, =
225p + 2.0(1 —p). Setting F,, = F,, then yields p = 1/6. The proportion of algorithm 24
decreases as interaction sequences lengthen and asymptotically approaches 1/6.
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Against STFT, the other three single-point mutants of STFT (algorithms 25, 28 and 32) always
defect, along with STFT, producing equal pay-offs and genetic drift between STFT and any of
these.

Case 7: algorithm 15, the only ALL C algorithm that is eliminated by none of its single-point
mutants, versus algorithm 32, the initial-defection version of 15

15 = J /.C 32 =) /D
D/C:.C D/C:.C
1 2 3
15 C C C e, 1.5 -
32 D C D e 40+
1 2 1 2
15 C C ... 3.0 32 D D .. 1|10
15 C C 32 D D ..
15532 = 15— \ =15 can invade 32 32515 = 40+ \= 32 can invade 15
32532 =1.0 15515 = 3.0

Let p be the proportion of algorithm 15 in the stable mixture when interaction sequences are very
long (or even-numbered) and let F,5 and F,, be the fitnesses of the two strategies. Then F 5 =
30p + 1.5(1 —p)and Fy, = 40p + (1 —p). Then F|; = F;, implies that p = 1/3. Thus, the
result is a stable mixture of strategies 15 and 32; algorithm 15 is increasingly represented for longer
(or even-numbered) interaction sequences, with an upper limit of p = 1/3.

These examples illustrate the methods by which any of the other results summarized in Table 1
can readily be obtained.

Appendix 2: how do TFT and ALL D manage to invade each other?

The invasion of ALL D by TFT will be considered first in this analysis and then the reverse. An
invasion by strategy A will be considered successful here if a single mutant A individual can
achieve a greater total pay-off against its opponents than the average opponent achieves. The
population consists of the one mutant and n other individuals. All interaction sequences are of
length m, which is assumed to be an odd number, as in the EVA runs described in the text. (The
relationships below can readily be modified to represent the cases with m even or with m equally
likely to be even or odd; for these cases, the inequalities presented here are only very slightly
conservative.) The 12 ALL D algorithms of Table 1 (those on the right-hand side having their
numbers within a square) are equivalent for the present purpose and will be referred to collectively
in this appendix as ALL D. Similarly, the 12 ALL C algorithms in the table will be collectively
labelled ALL C.

Invasion of ALL D by TFT

TFT can invade ALL D only when there are enough other individuals present that will cooperate
in response to cooperation, overcompensating TFT for initially playing C against defectors. Of the
35 two-rule algorithms, only STFT can drift into a population of ALL D carrying this critical
capability.
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Let s be the number of STFT individuals among the n defectors (STFT + ALL D). Pay-offs (via
Fig. 1) over all opponents, at m rounds per opponent, are as follows.

TFT: 25s (m—1) + (n—s)(m—1)

ALL D: mn + 4

STFT: m(n — 1) + 2.5(m + 1)

Average opponent of TFT: ((n — s )/n)mn +4) + (s/n)m (n—1) + 2.5(m + 1))
Successful invasion thus implies

25sm—1n + n—s)m—1n > (n—s)mn +4) + s(mmn—-1) +2.5(m+ 1))
which implies

s(lsnm—-=1) +mn +4 —mm—1) — 25m+1)] > n(mn+4) — n*(m—1)

resulting in

n(n+4)

ST Bm-Dn-1

Let s* be the minimal s consistent with succesful invasion. Then for very long interaction
sequences, s* — 0. For very large populations, the frequency s*/n approaches 1/(1.5m — 1.5).

Invasion of TFT by ALL D

All D can invade TFT only in the presence of a substantial number of ALL C individuals, which
can drift into a population of TFT. Let ¢ be the number of ALL C individuals among the n
cooperators (TFT + ALL C). Pay-offs over all rounds and opponents are as follows.

ALL D: 5cm + (n—c)m+ 4)

TFT: 3m(n—1) + m—1

ALL C:3m(n—1)

Average opponent of ALL D: 3m(n—1) + (n—c)/n)im—1)

The invasion succeeds when

Semn + n(n—=cYm+4) > 3mn(n—1) +(n—c)Ym—1)
which implies

cSmn — m+4n+m—1) > 3mn (n—1) + n(m—1) — (m+4n’
yielding

n2min—1) —4n — 1)
@n+1D(m—-1)

Let c* be the minimal number of ALL C individuals required for the invasion to succeed. Then
for very long sequences, the frequency c*/n = 2(n — 1)/(4n + 1); for very large populations,
c*/n = (2m — 4)/(4m — 4); and when both m and n are large, c*/n = 1/2.

Thus, with the exception of when populations are very small and sequences are short,
approximately half of a TFT population must have drifted to ALL C for an ALL D mutant to
invade successfully, whereas very few (often only one) STFT are needed to make an ALL D
population invasible by TFT.



